Recent studies have shown the potential of acoustic deterrents against invasive silver carp (Hypophthalmichthy molitrix). This study examined the phonotaxic response of the bighead carp (H. nobilis) to pure tones (500-2000 Hz) and playbacks of broadband sound from an underwater recording of a 100 hp outboard motor (0.06-10 kHz) in an outdoor concrete pond (10 x 5 x 1.2 m) at the U.S. Geological Survey Upper Midwest Environmental Science Center in La Crosse, WI. The number of consecutive times the fish reacted to sound from alternating locations at each end of the pond was assessed. Bighead carp were relatively indifferent to the pure tones with median consecutive responses ranging from 0 to 2 reactions away from the sound source. However, fish consistently exhibited significantly (P < 0.001) greater negative phonotaxis to the broadband sound (outboard motor recording) with an overall median response of 20 consecutive reactions during the 10 minute trials. In over 50% of broadband sound tests, carp were still reacting to the stimulus at the end of the trial, implying that fish were not habituating to the sound. This study suggests that broadband sound may be an effective deterrent to bighead carp and provides a basis for conducting studies with wild fish.
The effectiveness of an acoustic barrier to deter the movement of silver carp, Hypophthalmichthys molitrix (Valenciennes) and bighead carp, H. nobilis (Richardson) was evaluated. A pond (10 m × 5 m × 1.2 m) was divided in half by a concrete‐block barrier with a channel (1 m across) allowing fish access to each side. Underwater speakers were placed on each side of the barrier opening, and an outboard motor noise (broadband sound; 0.06–10 kHz) was broadcast to repel carp that approached within 1 m of the channel. Broadband sound was effective at reducing the number of successful crossings in schools of silver carp, bighead carp and a combined school. Repulsion rates were 82.5% (silver carp), 93.7% (bighead carp) and 90.5% (combined). This study demonstrates that broadband sound is effective in deterring carp and could be used as a deterrent in an integrated pest management system.
Ballast water is a leading vector for the introduction of aquatic invasive species worldwide and, once a novel species is established, regional ballast water exchange between ports can accelerate secondary spread. The importance of shipping induced invasions in the Laurentian Great Lakes has resulted in policies that require more stringent ballast water treatment standards for transoceanic shipping than is required of ships operating regionally within the Great Lakes. As a result, ballast water discharges within the Great Lakes are not well regulated, primarily because of the challenge of treating the high volumes of water carried by vessels that are confined to the waters of the Great Lakes. We used a discrete-time Markov chain model on a network with annual time-steps to simulate ballast water management scenarios at high-priority ports in the Great Lakes shipping network for two potential invaders, golden mussel (Limnoperna fortunei) and monkey goby (Neogobius fluviatilis). We chose high-priority ports by using graph-theoretic network analysis techniques to calculate six network centrality metrics for 151 ports in the network. Ports scoring high in network centrality scores have more ties with other ports or are positioned within the network such that they potentially have greater influence over the secondary spread of aquatic invasive species than other ports. We simulated secondary spread scenarios where hypothetical ballast water treatment was implemented at the top twenty ranked ports in each network centrality metric, as well as the top twenty busiest ports by ship arrivals. The results of each scenario were compared to a scenario where no management action was taken. Simulated secondary spread for both golden mussel and monkey goby resulted in significantly reduced infestation probabilities (p < 0.001) under all management scenarios when compared to unmanaged spread scenarios. Management at ports with inwardly directed ties to other ports reduced infestations by the greatest amount compared to other management scenarios; 65.4% for golden mussel and 74.6% for monkey goby. The indegree centrality of ports in the Great Lakes was found to be an important factor in governing secondary spread. Here we show that prioritized management, like high volume shore based treatment systems based on network centrality, is a potentially effective strategy for impeding the secondary spread of new or localized invasive species in the Great Lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.