Convertino, M.; Baker, K.M.; Vogel, J.T.; Lu, C.; Suedel, B.; and Linkov, I., "Multi-criteria decision analysis to select metrics for design and monitoring of sustainable ecosystem restorations" (2013). US Army Research. 190 The selection of metrics for ecosystem restoration programs is critical for improving the quality and utility of design and monitoring programs, informing adaptive management actions, and characterizing project success. The metrics selection process, that in practice is left to the subjective judgment of stakeholders, is often complex and should simultaneously take into account monitoring data, environmental models, socio-economic considerations, and stakeholder interests. With limited funding, it is often very difficult to balance the importance of multiple metrics, often competing, intended to measure different environmental, social, and economic aspects of the system. To help restoration planners and practitioners develop the most useful and informative design and monitoring programs, we propose the use of multi-criteria decision analysis (MCDA) methods, broadly defined, to select optimal ecosystem restoration metric sets. In this paper, we apply and compare two MCDA methods, multi-attribute utility theory (MAUT), and probabilistic multi-criteria acceptability analysis (ProMAA), for a hypothetical river restoration case study involving multiple stakeholders with competing interests. Overall, the MCDA results in a systematic, quantitative, and transparent evaluation and comparison of potential metrics that provides planners and practitioners with a clear basis for selecting the optimal set of metrics to evaluate restoration alternatives and to inform restoration design and monitoring. In our case study, the two MCDA methods provide comparable results in terms of selected metrics. However, because ProMAA can consider probability distributions for weights and utility values of metrics for each criterion, it is most likely the best option for projects with highly uncertain data and significant stakeholder involvement. Despite the increase in complexity in the metrics selection process, MCDA improves upon the current, commonlyused ad-hoc decision practice based on consultations with stakeholders by applying and presenting quantitative aggregation of data and judgment, thereby increasing the effectiveness of environmental design and monitoring and the transparency of decision making in restoration projects.
Uncertainties about future conditions and the effects of chosen actions, as well as increasing resource scarcity, have been driving forces in the utilization of adaptive management strategies. However, many applications of adaptive management have been criticized for a number of shortcomings, including a limited ability to learn from actions and a lack of consideration of stakeholder objectives. To address these criticisms, we supplement existing adaptive management approaches with a decision-analytical approach that first informs the initial selection of management alternatives and then allows for periodic re-evaluation or phased implementation of management alternatives based on monitoring information and incorporation of stakeholder values. We describe the application of this enhanced adaptive management (EAM) framework to compare remedial alternatives for mercury in the South River, based on an understanding of the loading and behavior of mercury in the South River near Waynesboro, VA. The outcomes show that the ranking of remedial alternatives is influenced by uncertainty in the mercury loading model, by the relative importance placed on different criteria, and by cost estimates. The process itself demonstrates that a decision model can link project performance criteria, decision-maker preferences, environmental models, and short- and long-term monitoring information with management choices to help shape a remediation approach that provides useful information for adaptive, incremental implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.