Much research on oestrogens has focused on their long-term action, exerting behavioural effects within hours to days through gene transcription. Oestrogens also affect behaviour on a much shorter time scale. These rapid effects are assumed to occur through cell signalling and can elicit a behavioural effect as early as 15 min after treatment. These effects on behaviour have primarily been explored through the action of oestradiol at three well-known oestrogen receptors (ERs): ERa, ERb and the more recently described G protein-coupled ER1 (GPER1). The rapid effects of oestradiol and ER agonists have been tested on both social and nonsocial learning paradigms. Social learning refers to a paradigm in which an animal acquires information and modifies its behaviour based on observation of another animal, commonly studied using the social transmission of food preferences paradigm. When administered shortly before testing, oestradiol rapidly improves social learning on this task, although no ER agonist has definitive, comparable improving effects. Some evidence points to GPER1, whereas ERa impairs, and ERb activation has no effect on social learning. Conversely, ERa and GPER1 play a larger role than ERb in the rapid improving effect of oestrogens on nonsocial learning, including social and object recognition. In addition, when administered immediately post-acquisition, oestrogens also rapidly improve memory consolidation in a variety of learning paradigms: object recognition, object placement, inhibitory avoidance and the Morris water maze, indicating that oestradiol affects the consolidation of multiple types of memory. Evidence suggests that these improvements are the result of oestrogens acting in the dorsal hippocampus where selective activation of all three ERs shows rapid improving effects on spatial learning comparable to oestradiol. However, the hippocampus is not necessary for rapid oestradiol improvements on social recognition. Although acute treatment with oestradiol enhances learning and memory on various social and nonsocial learning paradigms, the specific ERs play different roles in each type of learning. Future research should aim to further determine the roles of ERs with respect to the enhancing effects of oestradiol on learning and memory, and also determine where in the brain oestradiol acts to affect social and nonsocial learning.
Stereotypic behaviour (SB) occurs in certain human disorders (e.g. autism), and animals treated with stimulants or raised in impoverished conditions, including laboratory mice in standard cages. Dysfunctional cortico-basal ganglia pathways have been implicated in these examples, but for cage-induced forms of SB, the relative roles of ventral versus dorsal striatum had not been fully ascertained. Here, we used immunohistochemical staining of FosB and ΔFosB to assess long-term activation within the nucleus accumbens and caudate-putamen of C57BL/6 mice. Housed in typical laboratory cages, these mice spontaneously developed different degrees of route-tracing, bar-mouthing and other forms of SB (spending 0% to over 50% of their active time budgets in this behaviour). The most highly stereotypic mice showed the most elevated FosB/ΔFosB activity in the nucleus accumbens. No such patterns occurred in the caudate-putamen. The cage-induced SB common in standard-housed mice thus involves elevated activity within the ventral striatum, suggesting an aetiology closer to compulsive gambling, eating and drug-seeking than to classic amphetamine stereotypies and other behaviours induced by motor loop over-activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.