Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.
Germline pathogenic variants in TP53 are associated with Li‐Fraumeni syndrome, a cancer predisposition disorder inherited in an autosomal dominant pattern associated with a high risk of malignancy, including early‐onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer‐related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for 20 ACMG/AMP criteria, while nine were deemed not applicable. The original strength level for the 10 criteria was also adjusted due to current evidence. Use of TP53‐specific guidelines and sharing of clinical data among experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53‐specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification.
Reports of variable cancer penetrance in Li-Fraumeni syndrome (LFS) have raised questions regarding the prevalence of pathogenic germline TP53 variants. We previously reported higher-than-expected population prevalence estimates in sequencing databases composed of individuals unselected for cancer history. This study aimed to expand and further evaluate the prevalence of pathogenic and likely pathogenic germline TP53 variants in the gnomAD dataset (n = 138,632). Variants were selected and classified based on our previously published algorithm and compared with alternative estimates based on three different classification databases: ClinVar, HGMD, and the UMD_TP53 website. Conservative prevalence estimates of pathogenic and likely pathogenic TP53 variants were within the range of one carrier in 3,555–5,476 individuals. Less stringent classification increased the approximate prevalence to one carrier in every 400–865 individuals, mainly due to the inclusion of the controvertible p.N235S, p.V31I, and p.R290H variants. This study shows a higher-than-expected population prevalence of pathogenic and likely pathogenic germline TP53 variants even with the most conservative estimates. However, these estimates may not necessarily reflect the prevalence of the classical LFS phenotype which is based upon cancer family history. Comprehensive approaches are needed to better understand the interplay of germline TP53 variant classification, prevalence estimates, cancer penetrance, and LFS-associated phenotype.
Li-Fraumeni syndrome (LFS) is an autosomal-dominant cancer predisposition disorder associated with pathogenic germline variants in TP53, with a high penetrance over an individual's lifetime. The actual population prevalence of pathogenic germline TP53 mutations is still unclear, most likely due to biased selection of cancer affected families. The aim of this study was to estimate the population prevalence of potentially pathogenic TP53 exonic variants in three sequencing databases, totaling 63,983 unrelated individuals. Potential pathogenicity was defined using an original algorithm combining bioinformatic prediction tools, suggested clinical significance, and functional data. We identified 34 different potentially pathogenic TP53 variants in 131 out of 63,983 individuals (0.2%). Twenty-eight (82%) of these variants fell within the DNA-binding domain of TP53, with an enrichment for specific variants that were not previously identified as LFS mutation hotspots, such as the p.R290H and p.N235S variants. Our findings reveal that the population prevalence of potentially pathogenic TP53 variants may be up to 10 times higher than previously estimated from family-based studies. These results point to the need for further studies aimed at evaluating cancer penetrance modifiers as well as the risk associated between cancer and rare TP53 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.