Mutations in the parkin gene are common in earlyonset and familial Parkinson's disease (PD), and the parkin protein interacts in the ubiquitin-proteasome system as an E3 ligase. However, the regulatory pathways that govern parkin expression are unknown. In this study, we showed that a phylogenetically conserved N-myc binding site in the bi-directional parkin promoter interacted with myc-family transcription factors in reporter assays, and N-myc bound to the parkin promoter in chromatin immunoprecipitation assays and repressed transcription activity. Parkin expression was inversely correlated with N-myc levels in the developing mouse and human brain, in human neuroblastoma cell lines with various levels of n-myc amplification, and in an inducible N-myc cell line. Although parkin and N-myc expression were dramatically altered upon retinoic acid-induced differentiation of a human neuroblastoma cell line, modulation of parkin expression did not significantly affect either rates of cellular proliferation or levels of cyclin E. Analysis of additional genes associated with familial PD revealed a shared basis of transcription regulation mediated by N-myc and the cell cycle. Our results, in combination with functional knowledge of the proteins encoded by these genes, suggest a common pathway linking together PD, the ubiquitin-proteasome system, and cell cycle control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.