SummaryIn many biometrical applications, the count data encountered often contain extra zeros relative to the Poisson distribution. Zero-inflated Poisson regression models are useful for analyzing such data, but parameter estimates may be seriously biased if the nonzero observations are over-dispersed and simultaneously correlated due to the sampling design or the data collection procedure. In this paper, a zero-inflated negative binomial mixed regression model is presented to analyze a set of pancreas disorder length of stay (LOS) data that comprised mainly same-day separations. Random effects are introduced to account for inter-hospital variations and the dependency of clustered LOS observations. Parameter estimation is achieved by maximizing an appropriate log-likelihood function using an EM algorithm. Alternative modeling strategies, namely the finite mixture of Poisson distributions and the non-parametric maximum likelihood approach, are also considered. The determination of pertinent covariates would assist hospital administrators and clinicians to manage LOS and expenditures efficiently.
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which render the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.