For radiation therapy, it is crucial to ensure that the delivered dose matches the planned dose. Errors in the dose calculations done in the treatment planning system (TPS), treatment delivery errors, other software bugs or data corruption during transfer might lead to significant differences between predicted and delivered doses. As such, patient specific quality assurance (QA) of dose distributions, through experimental validation of individual fields, is necessary. These measurement based approaches, however, are performed with 2D detectors, with limited resolution and in a water phantom. Moreover, they are work intensive and often impose a bottleneck to treatment efficiency. In this work, we investigated the potential to replace measurement-based approach with a simulation-based patient specific QA using a Monte Carlo (MC) code as independent dose calculation engine in combination with treatment log files. Our developed QA platform is composed of a web interface, servers and computation scripts, and is capable to autonomously launch simulations, identify and report dosimetric inconsistencies. To validate the beam model of independent MC engine, in-water simulations of mono-energetic layers and 30 SOBP-type dose distributions were performed. Average Gamma passing ratio 99 ± 0.5% for criteria 2%/2 mm was observed. To demonstrate feasibility of the proposed approach, 10 clinical cases such as head and neck, intracranial indications and craniospinal axis, were retrospectively evaluated via the QA platform. The results obtained via QA platform were compared to QA results obtained by measurement-based approach. This comparison demonstrated consistency between the methods, while the proposed approach significantly reduced in-room time required for QA procedures.
Patient specific quality assurance (PSQA) is required to verify the treatment delivery and the dose calculation by the treatment planning system (TPS). The objective of this work is to demonstrate the feasibility to substitute resource consuming measurement based PSQA (PSQA M ) by independent dose recalculations (PSQA IDC ), and that PSQA IDC results may be interpreted in a clinically relevant manner using normal tissue complication probability (NTCP) and tumor control probability (TCP) models. Methods and materials: A platform for the automatic execution of the two following PSQA IDC workflows was implemented: (i) using the TPS generated plan and (ii) using treatment delivery log files (log-plan). 30 head and neck cancer (HNC) patients were retrospectively investigated. PSQA M results were compared with those from the two PSQA IDC workflows. TCP/NTCP variations between PSQA IDC and the initial TPS dose distributions were investigated. Additionally, for two example patients that showed low passing PSQA M results, eight error scenarios were simulated and verified via measurements and log-plan based calculations. For all error scenarios DTCP/NTCP values between the nominal and the log-plan dose were assessed. Results: Results of PSQA M and PSQA IDC from both implemented workflows agree within 2.7% in terms of gamma pass ratios. The verification of simulated error scenarios shows comparable trends between PSQA M and PSQA IDC . Based on the 30 investigated HNC patients, PSQA IDC observed dose deviations translate into a minor variation in NTCP values. As expected, TCP is critically related to observed dose deviations. Conclusions: We demonstrated a feasibility to substitute PSQA M with PSQA IDC . In addition, we showed that PSQA IDC results can be interpreted in clinically more relevant manner, for instance using TCP/NTCP.
Background Salvage external beam radiotherapy (sEBRT) for patients with a biochemical recurrence (BCR) after radical prostatectomy provides a 5-year biochemical progression-free survival up to 60%. Multiple studies have shown that dose escalation to the primary prostate tumour improves treatment outcome. However, data is lacking on the role of dose escalation in the recurrent salvage setting. The main objective of the PERYTON-trial is to investigate whether treatment outcome of sEBRT for patients with a BCR after prostatectomy can be improved by increasing the biological effective radiation dose using hypofractionation. Moreover, patients will be staged using the PSMA PET/CT scan, which is superior to conventional imaging modalities in detecting oligometastases. Methods The PERYTON-study is a prospective multicentre open phase III randomised controlled trial. We aim to include 538 participants (269 participants per treatment arm) with a BCR after prostatectomy, a PSA-value of < 1.0 ng/mL and a recent negative PSMA PET/CT scan. Participants will be randomised in a 1:1 ratio between the conventional fractionated treatment arm (35 × 2 Gy) and the experimental hypofractionated treatment arm (20 × 3 Gy). The primary endpoint is the 5-year progression-free survival after treatment. The secondary endpoints include toxicity, quality of life and disease specific survival. Discussion Firstly, the high rate of BCR after sEBRT may be due to the presence of oligometastases, for which local sEBRT is inappropriate. With the use of the PSMA PET/CT before sEBRT, patients with oligometastases will be excluded from intensive local treatment to avoid unnecessary toxicity. Secondly, the currently applied radiation dose for sEBRT may be too low to achieve adequate local control, which may offer opportunity to enhance treatment outcome of sEBRT by increasing the biologically effective radiotherapy dose to the prostate bed. Trial registration This study is registered at ClinicalTrials.gov (Identifier: NCT04642027). Registered on 24 November 2020 – Retrospectively registered. The study protocol was approved by the accredited Medical Ethical Committee (METc) of all participating hospitals (date METc review: 23-06-2020, METc registration number: 202000239). Written informed consent will be obtained from all participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.