In this study, the pressure loss value of air intake hose of FIAT 1.3 E6D type engine, located between intercooler and inlet manifold of the engine, was examined using computational fluid dynamics, considering geometrical deformation in a rubber material. The rubber material modelling was performed by the verification of the data-obtained through the experimental method-with ANSYS software using Mooney-Rivlin method. The rubber material modelling was performed with the aim of correctly determination of the increase in the hose diameter when subjected to pressure, since the material has the feature of elasticity. In this study, ANSYS Fluent v.18.0 software and a static pressure machine were used. The air intake into the hose took place at the pressure of 123,5 kPa and flow rate of 0,087 kg/s. A solution, independent of the number of element, was obtained in the analysis. The turbulence model used in the study is standard k-ε type. As a result, the deformation-oriented pressure loss in the last geometry was found 1,85 kPa. The analyses were repeated for non-deformed geometry, and a pressure loss of 2,04 kPa was determined. At the result of the test, the geometry was seen to become actually deformed, and the pressure loss was found 1,9 kPa. The lowness of pressure loss in the deformed geometry was seen as the removal of the sharp bends that would cause local losses with the effect of pressure forces. In this study, it was determined that geometrical deformation changes the geometrical features that causes pressure loss, and leads to less pressure loss.
Bu çalışmada otomotiv sektöründeki firmanın termal konfor şartları ve çalışan kilosu, giysi yalıtım faktörü, metabolik oranın termal konfor üzerinde etkilerini incelenmiştir. Konfor ölçümleri 6 bölümde yapılmıştır. Ölçümlerin yapıldığı bölümler kalıphane, kaynak, pres, boya, montaj ve boyahane bölümleridir. Ölçümler DELTA OHM 52.1 marka ekipmanlar ve yazılımı ile yapılmıştır. Giysi faktörü ölçümlerde 0,8 clo olarak alınmıştır. Metabolik oran değerleri bölümlerine bağlı olarak düşük 100 W/m 2 ve orta 135 W/m 2 değerler olarak kabul edilmiştir. Giysi faktörü etkisinin incelenmesinde değerler 0
In our study, the effects of the Tricklevent passive ventilation system with the international patent application number 2013/08326 on thermal comfort and energy saving were examined. Tricklevent innovative passive ventilation system is a ventilation system placed on the facade and controlled by an automation system designed vertically or horizontally. In our study, a 14 m2 prototype room with Tricklevent system was built and measurements were taken from places determined by thermocouples as the system was closed-open. The tests were conducted at 11:00 am during the hottest hours of the day on August 15-16, 2021. The system was also analyzed with computational fluid mechanics software. For numerical analysis, the Re number was calculated and it was determined that the flow was turbulent. The k-Ɛ turbulence model was used in the analyses. In the analysis, independence from the network was studied. The Discrete Transfer model was used as the radiation model. 1009 W/m2 solar load is defined. The velocity of the ambient air is calculated as 1.94 m/s, the pressure difference is 2.19 Pa and the air flow to be taken from the system is calculated as 0.024 m3/s. According to the results obtained in the tests, it has been determined that when the Tricklevent system is turned off, the indoor temperature exceeds the ambient temperature within 16 minutes with the effect of radiation, and the indoor temperature reaches a maximum of 30 °C in 16 minutes and 34.5 °C after 24 minutes when the system is on. It has been determined that a temperature drop of 2-3 oC is sufficient when Tricklevent Y.P.H.S is on, while the air conditioner should provide a temperature drop of approximately 6.5-7.5 oC when the system is off. It has been observed that the compressor operating time will be longer when the system is off. As a result of the study, it was seen that 14 kWh energy saving was achieved in the prototype room. According to the power of the air conditioner, as a result of not operating the air conditioner for 16 minutes, 16% savings were achieved in a 1-hour period. Depending on the height of the building, the operating time of the air conditioner can be up to 34 minutes with the advantage provided in air flow and temperature. This showed that the energy savings to be made can be between 16-50% in 1 hour time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.