High quality carbon nanodots (C-dots) with high purity were synthesized through a mild, one-step electrochemical approach, without the assistance of any chemicals but only pure water. This high productivity method makes the synthetic process of C-dots synthesis both economical as well as environment-friendly. The as prepared C-dots are predominantly multi-layer graphene oxide, with luminescence and high up-conversion photoluminescence (emission of light at shorter wavelengths than the excitation wavelength). Meanwhile, C-dots showed peroxidise mimetic function and visible-light-sensitive photocatalytic activity for methyl orange degradation. In addition, a novel photocatalyst (TiO(2)/C-dots) was obtained by combining C-dots with TiO(2) through an easy hydrothermal method. Remarkably, TiO(2)/C-dots exhibited an excellent visible-light photocatalytic activity.
Large-scale and monodisperse colloidal carbon nanospheres (CNSs) were synthesized with the assistance of polyoxometalates (POMs) under hydrothermal conditions. The POMs could act not only as a catalyst to promote the glucose dehydration process, but also as a stabilizer to prevent the aggregation of CNSs. The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FT-IR). The diameters of CNSs from 100 nm to 900 nm can be controlled by different acidic and oxidizing properties of POMs. This method was demonstrated to be simple, reliable and reproducible. The conversion yield of CNSs prepared with the addition of phosphomolybdic acid was up to 37%. Based on the experiment, the possible mechanism for CNSs formation was proposed. After modification of CNSs with cysteine, the samples were utilized as electrode materials for sensitive heavy metal ions detection. The detection limits for lead(II) and cadmium(II) were 1 Â 10 À8 M and 2 Â 10 À7 M, respectively. The results highlight the potential application of CNSs as electrode materials for biosensors and catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.