Herein, we investigate the long-term clinical outcomes for cervical cancer patients treated with in-room computed tomography–based brachytherapy. Eighty patients with Stage IB1–IVA cervical cancer, who had undergone treatment with combined 3D high-dose rate brachytherapy and conformal radiotherapy between October 2008 and May 2011, were retrospectively analyzed. External beam radiotherapy (50 Gy) with central shielding after 20–40 Gy was performed for each patient. Cisplatin-based chemotherapy was administered concurrently to advanced-stage patients aged ≤75 years. Brachytherapy was delivered in four fractions of 6 Gy per week. In-room computed tomography imaging with applicator insertion was performed for treatment planning. Information from physical examinations at diagnosis, and brachytherapy and magnetic resonance imaging at diagnosis and just before the first brachytherapy session, were referred to for contouring of the high-risk clinical target volume. The median follow-up duration was 60 months. The 5-year local control, pelvic progression-free survival and overall survival rates were 94%, 90% and 86%, respectively. No significant differences in 5-year local control rates were observed between Stage I, Stage II and Stage III–IVA patients. Conversely, a significant difference in the 5-year overall survival rate was observed between Stage II and III–IVA patients (97% vs 72%; P = 0.006). One patient developed Grade 3 late bladder toxicity. No other Grade 3 or higher late toxicities were reported in the rectum or bladder. In conclusion, excellent local control rates were achieved with minimal late toxicities in the rectum or bladder, irrespective of clinical stage.
PurposeThere is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity.Methods and MaterialsC57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry.ResultsIn the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy.ConclusionsOur results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a promising treatment in combination with radiotherapy.
BACKGROUND This study sought to evaluate the toxicity and efficacy of carbon ion radiotherapy (C‐ion RT) for locally advanced adenocarcinoma of the uterine cervix in a phase 1/2 clinical trial. METHODS The treatment consisted of whole‐pelvic irradiation of 36.0 gray equivalents (GyE) in 12 fractions and local boost with dose escalation from 26.4 to 38.4 GyE in 8 fractions. The dose escalation was performed with careful observation of acute normal tissue responses. Total dose to the cervical tumor was 62.4 to 74.4 GyE in 20 fractions. RESULTS Between April 1998 and February 2010, 58 patients were treated with C‐ion RT in this clinical trial. The number of patients with stage IIB, IIIB, and IVA disease were 20, 35, and 3, respectively. Median tumor size was 5.5 cm (range, 3.0‐11.8 cm). Twenty‐seven patients had pelvic lymph node metastases. The median follow‐up period was 38 months. All patients completed the treatment schedule. Grade 2 or higher late toxicity was found in 8 patients: 5 with bladder and 2 with small intestine grade 2 toxicities, and 1 patient had grade 4 rectal complication, which was surgically salvaged. The 5‐year local control rate, local control rate including salvage surgery, and overall survival rate in all cases were 54.5%, 68.2%, and 38.1%, respectively. CONCLUSIONS Dose escalation of C‐ion RT for adenocarcinoma of the uterine cervix was accomplished without severe toxicities except in 1 case. Although the number of patients in this study was small, the results support continued investigation and analysis to confirm therapeutic efficacy. Cancer 2014;120:1663–1669. © 2014 American Cancer Society.
Carbon-ion radiotherapy (CIRT) is an advanced radiotherapy and has achieved good local control, even in tumors that are resistant to conventional photon beam radiotherapy (PBRT). However, distant metastasis control is an important issue. Recently, the combination of radiotherapy and immunotherapy has attracted the attention. In immunotherapy, dendritic cells (DCs) play a pivotal role in the anti-tumor immune system. However, the mechanisms underlying the combination therapy of DCs and radiotherapy have been unclear. In the present study, we evaluated anti-metastatic effects of this combination therapy, focused on the irradiation type and the route of DC administration, using a mouse model. C3H/He mice bearing NR-S1 cells were treated with CIRT or PBRT, using biologically equivalent doses. Subsequently, DCs were administered intratumorally (IT) or intravenously (IV). IV and IT DC administrations combined with CIRT to the local tumor, but not alone, significantly suppressed pulmonary metastasis, whereas the combination of DCs with PBRT suppressed metastasis at a relatively higher dose. Additionally, the anti-metastatic effect was greater in IV DC administration compared with in IT DC administration in both CIRT and PBRT. The expression levels of CD40 and IL-12 in DCs were significantly increased after co-culturing with CIRT-treated NR-S1 cells. In addition, IV administration of those co-cultured DCs significantly suppressed pulmonary metastasis. Furthermore, ecto-calreticulin levels from CIRT-treated NR-S1 cells significantly increased compared with those of a PBRT-treated tumor. Taken together, these results suggest that local CIRT combined with IV DCs augments an immunogenicity of the tumor cells by ecto-calreticulin expression and the maturation of DCs to stimulate anti-tumor immunity to decrease lung metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.