Machine bottlenecks, resulting from shifting and unbalanced machine loads caused by resource capacity limitations, impair product-mix flexibility production systems. Thus, the knowledge base (KB) of a dynamic scheduling control system should be dynamic and include a knowledge revision mechanism for monitoring crucial changes that occur in the production system. In this paper, reinforcement learning (RL)-based dynamic scheduling and a selection mechanism for multiple dynamic scheduling rules (MDSRs) are proposed to support the operating characteristics of a flexible manufacturing system (FMS) and semiconductor wafer fabrication (FAB). The proposed RL-based dynamic scheduling MDSR selection mechanism consisted of initial MDSR KB generation and revision phases. According to various performance criteria, the presented approach yields a system performance that is superior to those of the fixed-decision scheduling approach, the machine learning classification approach, and the classical MDSR selection mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.