SummaryThe search for new TB drugs that rapidly and effectively sterilize the tissues and are thus able to shorten the duration of chemotherapy from the current 6 months has been hampered by a lack of understanding of the metabolism of the bacterium when in a 'persistent' or latent form. Little is known about the condition in which the bacilli survive, although laboratory models have shown that Mycobacterium tuberculosis can exist in a non-growing, drug-resistant state that may mimic persistence in vivo. Using nutrient starvation, we have established a model in which M. tuberculosis arrests growth, decreases its respiration rate and is resistant to isoniazid, rifampicin and metronidazole. We have used microarray and proteome analysis to investigate the response of M. tuberculosis to nutrient starvation. Proteome analysis of 6-week-starved cultures revealed the induction of several proteins. Microarray analysis enabled us to monitor gene expression during adaptation to nutrient starvation and confirmed the changes seen at the protein level. This has provided evidence for slowdown of the transcription apparatus, energy metabolism, lipid biosynthesis and cell division in addition to induction of the stringent response and several other genes that may play a role in maintaining longterm survival within the host. Thus, we have generated a model with which we can search for agents active against persistent M. tuberculosis and revealed a number of potential targets expressed under these conditions.
Reducing the burden of infectious diseases that affect people in the developing world requires sustained collaborative drug discovery efforts. The quality of the chemical starting points for such projects is a key factor in improving the likelihood of clinical success, and so it is important to set clear go/no-go criteria for the progression of hit and lead compounds. With this in mind, the Japanese Global Health Innovative Technology (GHIT) Fund convened with experts from the Medicines for Malaria Venture, the Drugs for Neglected Diseases initiative and the TB Alliance, together with representatives from the Bill &Melinda Gates Foundation, to set disease-specific criteria for hits and leads for malaria, tuberculosis, visceral leishmaniasis and Chagas disease. Here, we present the agreed criteria and discuss the underlying rationale.
Mycobacterium tuberculosis (Mtb) is an obligate aerobe that is capable of long-term persistence under conditions of low oxygen tension. Analysis of the Mtb genome predicts the existence of a branched aerobic respiratory chain terminating in a cytochrome bd system and a cytochrome aa3 system. Both chains can be initiated with type II NADH:menaquinone oxidoreductase. We present a detailed biochemical characterization of the aerobic respiratory chains from Mtb and show that phenothiazine analogs specifically inhibit NADH:menaquinone oxidoreductase activity. The emergence of drug-resistant strains of Mtb has prompted a search for antimycobacterial agents. Several phenothiazines analogs are highly tuberculocidal in vitro, suppress Mtb growth in a mouse model of acute infection, and represent lead compounds that may give rise to a class of selective antibiotics. Mycobacterium tuberculosis ͉ respiratory chainT he World Health Organization estimates that two billion people are infected with Mycobacterium tuberculosis (Mtb), and two million people die of the disease each year (1). Most individuals infected with the organism are latent carriers who have a 2-23% lifetime risk of developing reactivation tuberculosis (TB). The risk dramatically increases if the carrier's immune system is suppressed. Also, drug resistance is a serious concern; the isoniazid (INH)-resistance rate is Ϸ10%, and the rifampicin (RIF) resistance rate is Ϸ1%, with lower numbers in countries with effective TB programs and higher numbers in countries with deficient TB programs. The World Health Organization declared TB infections to be a global public health emergency (1), and the need to identify targets for antimicrobial therapy remains urgent.Mtb is capable of establishing persistent infection in the host by using a complex interplay between the host immune system and bacterial survival mechanisms. In the persistent infection, Mtb adapt to depletion of available oxygen and nutrients and enter a stage of nonreplicating persistence (NRP) in granulomatous or necrotic lesions. NRP Mtb are resistant to INH, ethambutol, and RIF, but they become sensitive to metronidazole in vitro (2). Given the critical role of oxygen in the generation of cellular energy and bacterial long-term survival, there is surprisingly little information on oxidative phosphorylation in Mtb. Clearly, oxidative phosphorylation is a central component in the production of ATP and the subsequent growth and pathogenesis of Mtb. Here, we characterize the aerobic respiratory pathway and show that NADH:menaquinone oxidoreductase (Ndh) is a key target for TB agents. Materials and MethodsMedia and Strains. Mtb H 37 R v was a gift from C. Imperatrice (Clinical Infectious Diseases, Hospital of the University of Pennsylvania) and Mycobacterium smegmatis Mc 2 155 was obtained from V. Mizrahi (National Health Laboratory Service, Johannesburg). Bacteria were cultured in 7H9 broth supplemented with 10% oleic acid-albumin-dextrose catalase͞0.5% glycerol͞0.05% Tween 80. Solid agar (15 g͞liter) was ad...
The fast initial down-regulation of expression of inflammatory mediators coincided with rapid killing of actively dividing bacilli, whereas slower delayed changes occurred as drugs acted on dormant bacilli and coincided with lung pathology resolution. Measurement of biosignatures during clinical trials of new drugs could be useful predictors of rapid bactericidal or sterilizing drug activity, and would expedite the licensing of new treatment regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.