Seismic anisotropy is a powerful tool for detecting the geometry and style of deformation in the Earth's interior, as it primarily reflects the deformation-induced preferred orientation of anisotropic crystals. Although seismic anisotropy in the upper mantle is generally attributed to the crystal-preferred orientation of olivine, the strong trench-parallel anisotropy (delay time of one to two seconds) observed in several subduction systems is difficult to explain in terms of olivine anisotropy, even if the entire mantle wedge were to act as an anisotropic source. Here we show that the crystal-preferred orientation of serpentine, the main hydrous mineral in the upper mantle, can produce the strong trench-parallel seismic anisotropy observed in subduction systems. High-pressure deformation experiments reveal that the serpentine c-axis tends to rotate to an orientation normal to the shear plane during deformation; consequently, seismic velocity propagating normal to the shear plane (plate interface) is much slower than that in other directions. The seismic anisotropy estimated for deformed serpentine aggregates is an order of magnitude greater than that for olivine, and therefore the alignment of serpentine in the hydrated mantle wedge results in a strong trench-parallel seismic anisotropy in the case of a steeply subducting slab. This hypothesis is also consistent with the presence of a hydrous phase in the mantle wedge, as inferred from anomalously low seismic-wave velocities.
Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction. The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes and subduction water flux, thereby promoting arc volcanism. Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures, the flux of water delivery to the reaction front appears to control the lateral extent of serpentinization. In this study, we measured the permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the lateral extent of serpentinization along an outer-rise fault based on Darcy’s law. The experimental results indicate that serpentinization extends to a region several hundred meters wide in the direction normal to the outer-rise fault in the uppermost oceanic mantle. We calculated the global water flux carried by serpentinized oceanic mantle ranging from 1.7 × 1011 to 2.4 × 1012 kg/year, which is comparable or even higher than the water flux of hydrated oceanic crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.