In the neurological mutant mouse reeler, the histological organization of the neocortex develops abnormally and essentially results in an inversion of the relative positions of the cortical layers. The reeler mutation, therefore, provides an insight into the molecular mechanisms underlying the formation of the cortical layers. We have generated a monoclonal antibody (CR-50) that probes a distinct allelic antigen present in wild-type but not in reeler mutant mice. CR-50 reacted specifically with Cajal-Retzius neurons, one of the first cortical neurons to differentiate in the neocortex, but whose functional role is not known. When dissociated cerebral cortical cells were incubated with CR-50 in reaggregation culture, the genotype-dependent histogenetic assembly of wild-type cortical cells resembled that of reeler mutants. These findings revealed that the selective expression of a distinct molecule on Cajal-Retzius neurons is critical for the normal lamination of cortical neurons in the mammalian neocortex.
We report the successful purification of a cloned lysin encoded by the novel Staphylococcus aureus bacteriophage phi MR11. The lysin, designated MV-L, rapidly and completely lysed cells of a number of S. aureus strains tested, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus and a subset of vancomycin-intermediate S. aureus (VISA) in growing conditions. MV-L-mediated killing is specific to S. aureus and not to other species, except for S. simulans. MV-L exerted its staphylocidal effect synergistically with glycopeptide antibiotics against VISA. MV-L efficiently eliminated MRSA that had been artificially inoculated into the nares of mice. The intraperitoneal administration of MV-L also protected mice against MRSA septic death, without any harmful effects. Although MV-L evoked detectable levels of a humoral response in mice, the antibodies did not abolish the bacteriolytic activity. These results indicate that MV-L might be useful as a powerful therapeutic agent against multidrug-resistant S. aureus infections.
The SNAP receptor (SNARE) complex is a core complex specialized for synaptic vesicle exocytosis, and the binding of SNAPs to the complex is an essential step for neurotransmitter release. Complexin I and II have been identified as SNARE-complex-associated proteins. Importantly, complexins compete with alpha-SNAP for binding to the complex, suggesting that complexins may modulate neurotransmitter release process. To examine this possibility and to understand the physiological function of complexins, we generated complexin II knockout mice. The complexin-II-deficient mice (-/-) were viable and fertile, and appeared normal. Electrophysiological recordings in the mutant hippocampus showed that ordinary synaptic transmission and paired-pulse facilitation, a form of short-term synaptic plasticity, were normal. However, long-term potentiation (LTP) in both CA1 and CA3 regions was impaired, suggesting that complexin II may not be essential for synaptic vesicle exocytosis, but it does have a role in the establishment of hippocampal LTP.
Background:In neurons, the plasma membrane is separated into functional segments. Results: A phospholipid with a unique acyl chain composition is concentrated at the tips of neuronal projections, which is necessary for the confinement of proteins at the site.
Conclusion:The neuronal plasma membrane is compartmentalized by a unique phospholipid species. Significance: This reveals a novel mode of membrane compartmentalization.
SummaryMesenchymal stem (stromal) cells (MSCs) are being investigated for treating degenerative and inflammatory disorders because of their reparative and immunomodulatory properties. Intricate mechanisms relate cell death processes with immune responses, which have implications for degenerative and inflammatory conditions. We review the therapeutic value of MSCs in terms of preventing regulated cell death (RCD). When cells identify an insult, specific intracellular pathways are elicited for execution of RCD processes, such as apoptosis, necroptosis, and pyroptosis. To some extent, exacerbated RCD can provoke an intense inflammatory response and vice versa. Emerging studies are focusing on the molecular mechanisms deployed by MSCs to ameliorate the survival, bioenergetics, and functions of unfit immune or nonimmune cells. Given these aspects, and in light of MSC actions in modulating cell death processes, we suggest the use of novel functional in vitro assays to ensure the potency of MSCs for preventing RCD. Such analyses should be associated with existing functional assays measuring the anti‐inflammatory capabilities of MSCs in vitro. MSCs selected on the basis of two in vitro functional criteria (i.e., prevention of inflammation and RCD) could possess optimal therapeutic efficacy in vivo. In addition, we underline the implications of these perspectives in clinical studies of MSC therapy, with particular focus on acute respiratory distress syndrome. Stem Cells Translational Medicine
2017;6:713–719
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.