The double exponential (DE) formulas for numerical integration are known to be highly efficient, more efficient than the single exponential (SE) formulas in many cases. Function classes suited to the SE formulas have already been investigated in the literature through rigorous mathematical analysis, whereas this is not the case with the DE formulas. This paper identifies function classes suited to the DE formulas in a way compatible with the existing theoretical results for the SE formulas. The DE formulas are good for more restricted classes of functions, but more efficient for such functions. Two concrete examples demonstrate the subtlety in the behavior of the DE formulas that is revealed by our theoretical analysis.
A jump system is a set of integer points with an exchange property, which is a generalization of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid (or a submodular system). Recently, the concept of M-convex functions on constant-parity jump systems is introduced by Murota as a class of discrete convex functions that admit a local criterion for global minimality. M-convex functions on constant-parity jump systems generalize valuated matroids, valuated delta-matroids, and M-convex functions on base polyhedra. This paper reveals that the class of M-convex functions on constant-parity jump systems is closed under a number of natural operations such as splitting, aggregation, convolution, composition, and transformation by networks. The present results generalize hitherto-known similar constructions for matroids, delta-matroids, valuated matroids, valuated delta-matroids, and M-convex functions on base polyhedra.
Abstract. The DE-Sinc formulas, resulting from a combination of the Sinc approximation formula with the double exponential (DE) transformation, provide a highly efficient method for function approximation. In many cases they are more efficient than the SE-Sinc formulas, which are the Sinc approximation formulas combined with the single exponential (SE) transformations. Function classes suited to the SE-Sinc formulas have already been investigated in the literature through rigorous mathematical analysis, whereas this is not the case with the DE-Sinc formulas. This paper identifies function classes suited to the DE-Sinc formulas in a way compatible with the existing theoretical results for the SE-Sinc formulas. Furthermore, we identify alternative function classes for the DE-Sinc formulas, as well as for the SE-Sinc formulas, which are more useful in applications in the sense that the conditions imposed on the functions are easier to verify.
SUMMARYThe concept of M-convex functions has recently been generalized for functions defined on constant-parity jump systems. The bmatching problem and its generalization provide canonical examples of Mconvex functions on jump systems. In this paper, we propose a steepest descent algorithm for minimizing an M-convex function on a constant-parity jump system. key words: jump system, discrete convex function, local optimality, steepest descent algorithm
Abstract. We present a numerical method for approximating an indefinite integral by the double exponential sinc method. The approximation error of the proposed method with N integrand function evaluations isfor a reasonably wide class of integrands, including those with endpoint singularities. The proposed method compares favorably with the existing formulas based on the ordinary sinc method. Computational results show the accordance of the actual convergence rates with the theoretical estimate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.