A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.
Solid-state materials suitable for use as proton irradiation targets were investigated for producing high-purity (11)CH4 molecules for heavy-ion cancer therapy. The radioactivity of gas produced by proton irradiation was measured for several target materials. Also, the radioactive molecular species of the produced gas were analyzed by radio gas chromatography. We found that 5 × 10(12) (11)C molecules could be collected by proton irradiation on a NaBH4 target. We also found that the (11)CH4 molecules were produced and collected directly from the irradiated target, owing to the hydrogen atoms bound in the solid-state NaBH4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.