The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering approaches.
Cell penetrating peptides (CPPs) are a relatively new class of peptides that have the promising capability to cross cell membranes. While details remain to be resolved, various non-receptor-mediated endocytic pathways likely contribute most to the cell penetrating properties of these peptides. CPPs have been used to deliver many different cargos - ranging from radionuclides and other peptides to antibodies and nanoparticles - into cells. Besides many different drug delivery applications, CPPs have also seen a limited use in molecular imaging. Molecular imaging of intracellular and intranuclear targets, by techniques such as SPECT, PET, optical imaging, and MRI, relies heavily on the delivery of contrast agents to the cytoplasm and/or nuclei of the target tissue. Therefore, the number of applications in molecular imaging of intracellular targets has remained relatively low, because of the effective barrier presented by the cell membrane. One of the key strategies to overcome this challenge is the introduction of membrane-transducing peptides in the design of new contrast agents. This review presents an overview of the literature on CPPs, focusing on their use for molecular imaging. Applications using proteins and peptides, DNA/RNA, and CPP-loaded cells as the imaging agents will be looked at. Moreover, the difficulties and pitfalls regarding the use of CPPs in molecular imaging will be discussed.
Prostate-specific membrane antigen (PSMA) is highly overexpressed in prostate cancer. Many PSMA analog radiotracers for PET/CT prostate cancer staging have been developed, such as 68 Ga-PSMA-11. This radiotracer has achieved good results in multiple clinical trials, but because of the superior imaging characteristics of 18 F-fluoride, 18 F-PSMA-11 was developed. The aim of this study was to evaluate the administration safety and radiation dosimetry of 18 F-PSMA-11. Methods: Six patients (aged 62-68 y; mean, 66 ± 2 y) with suspected prostate cancer recurrence after previous treatment were administered 2 MBq of 18 F-PSMA-11 per kilogram of body weight and then underwent low-dose PET/CT imaging at 0, 20, 50, 90, and 300 min after injection. To evaluate the safety of administration, vital parameters were monitored. To assess toxicity, full blood count and biochemical parameters were determined. According to the latest International Commission on Radiological Protection recommendations, radiation dosimetry analysis was performed using IDAC-Dose 2.1. For blood activity measurement, small samples of venous blood were collected at various time points after injection. The unbound 18 F-fluoride fraction was determined in plasma at 20, 50, and 90 min after administration to evaluate the defluorination rate of 18 F-PSMA-11. Results: After injection, 18 F-PSMA-11 cleared rapidly from the blood. At 5 h after injection, 29.0% ± 5.9% of the activity was excreted in urine. The free 18 F fraction in plasma increased from 9.7% ± 1.0% 20 min after injection to 22.2% ± 1.5% 90 min after injection. The highest tracer uptake was observed in kidneys, bladder, spleen, and liver. No study drug-related adverse events were observed. The calculated mean effective dose was 12.8 ± 0.6 μSv/MBq. Conclusion: 18 F-PSMA-11 can be safely administered and results in a mean effective dose of 12.8 ± 0.6 μSv/MBq. Therefore, the total radiation dose is lower than for other PSMA PET agents and in the same range as 18 F-DCFPyL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.