We present a comprehensive experimental study of the formation and activity of dealloyed nanoporous Ni/Pt alloy nanoparticles for the cathodic oxygen reduction reaction. By addressing the kinetics of nucleation during solvothermal synthesis we developed a method to control the size and composition of Ni/Pt alloy nanoparticles over a broad range while maintaining an adequate size distribution. Electrochemical dealloying of these size-controlled nanoparticles was used to explore conditions in which hierarchical nanoporosity within nanoparticles can evolve. Our results show that in order to evolve fully formed porosity, particles must have a minimum diameter of ∼15 nm, a result consistent with the surface kinetic processes occurring during dealloying. Nanoporous nanoparticles possess ligaments and voids with diameters of approximately 2 nm, high surface area/mass ratios usually associated with much smaller particles, and a composition consistent with a Pt-skeleton covering a Ni/Pt alloy core. Electrochemical measurements show that the mass activity for the oxygen reduction reaction using carbon-supported nanoporous Ni/Pt nanoparticles is nearly four times that of commercial Pt/C catalyst and even exceeds that of comparable nonporous Pt-skeleton Ni/Pt alloy nanoparticles.
The electrochemistry of dealloying silver/gold alloys in neutral pH silver nitrate solution to form nanoporous gold ͑NPG͒ is discussed. At pH 7, porosity evolution was observed to occur at high potentials, above that required for oxygen evolution, and within the nominal domain of the Pourbaix diagram where silver would be expected to form a passivating oxide. Electron microscopy shows that a small pore ͑ϳ5 nm͒ NPG is formed over a potential regime of 1.3-2.0 V vs normal hydrogen electrode, but electrochemical measurements show that the specific capacitance of samples over the same voltage range rises nearly threefold. The observations are explained in terms of residual surface oxides passivating the pores behind the dissolution front, which is itself acidified ͑and thus corrosive͒ due to an accumulation of protons associated with oxide formation and water dissociation. A model is proposed that is consistent with the electrochemical and microscopy results. This method of fabricating NPG has advantages of simplicity and safety, and the porosity formation mechanism may be extended to other systems.
Electroreduction of CO 2 represents a promising solution for addressing the global challenges in energy and sustainability. This reaction is highly sensitive to the surface structure of electrocatalysts and the local electrochemical environment. We have investigated the effect of Cu nanoparticle shape on the electrocatalysis of CO 2 reduction by using gasdiffusion electrodes (GDEs) and flowing alkaline catholytes. Cu nanocubes of ∼70 nm in edge length are synthesized with {100} facets preferentially exposed on the surface. They are demonstrated to possess substantially enhanced catalytic activity and selectivity for CO 2 reduction, compared to Cu nanospheres of similar particle sizes. The electrocatalytic performance was further found to be dependent on the concentration of electrolyte (KOH). The Cu nanocubes reach a Faradaic efficiency of 60% and a partial current density of 144 mA/cm 2 toward ethylene (C 2 H 4 ) production, with the catalytic enhancement being attributable to a combination of surface structure and electrolyte alkalinity effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.