The incidence of septic shock caused by gram-positive bacteria has risen markedly in the last few years. It is largely unclear how gram-positive bacteria (which do not contain endotoxin) cause shock and multiple organ failure. We have discovered recently that two cell wall fragments of the pathogenic gram-positive bacterium Staphylococcus aureus, lipoteichoic acid (LTA) and peptidoglycan (PepG), synergize to cause the induction of nitric oxide (NO) formation, shock, and organ injury in the rat. We report here that a specific fragment of PepG, N-acetylglucosamine-β-[1→ 4]-N-acetylmuramyl-l-alanine–d-isoglutamine, is the moiety within the PepG polymer responsible for the synergism with LTA (or the cytokine interferon γ) to induce NO formation in the murine macrophage cell line J774.2. However, this moiety is also present in the PepG of the nonpathogenic bacterium Bacillus subtilis. We have discovered subsequently that S. aureus LTA synergizes with PepG from either bacterium to cause enhanced NO formation, shock, and organ injury in the rat, whereas the LTA from B. subtilis does not synergize with PepG of either bacterium. Thus, we propose that the structure of LTA determines the ability of a particular bacterium to cause shock and multiple organ failure (pathogenicity), while PepG acts to amplify any response induced by LTA.
1 The pathological features of Gram-positive shock can be mimicked by the co-administration of two cell wall components of Staphylococcus aureus, namely lipoteichoic acid (LTA) and peptidoglycan (PepG). This is associated with the expression of the inducible isoform of nitric oxide synthase (iNOS) in various organs. We have investigated the effects of dexamethasone (which prevents the expression of iNOS protein) or aminoguanidine (an inhibitor of iNOS activity) on haemodynamics, multiple organ dysfunction syndrome (MODS) as well as iNOS activity elicited by LTA+PepG in anaesthetized rats. 2 Co-administration of LTA (3 mg kg-', i.v.) and PepG (10 mg kg-', i.v.) resulted in a significant increase in the plasma levels of tumour necrosis factor-a (TNFa, maximum at 90 min) as well as a biphasic fall in mean arterial blood pressure (MAP) from 120 + 3 mmHg (time 0) to 77 + 5 mmHg (at 6 h, n = 8; P< 0.05). This hypotension was associated with a significant tachycardia (4-6 h, P <0.05) and a reduction of the pressor response elicited by noradrenaline (NA, 1 mg kg-', i.v., at 1-6 h; n =8, P < 0.05). Furthermore, LTA + PepG caused time-dependent increases in the serum levels of markers of hepatocellular injury, glutamate-pyruvate-transaminase (GPT) and glutamate-oxalacetate-transaminase (GOT). In addition, urea and creatinine (indicators of renal dysfunction) were increased. There was also a fall in arterial oxygen tension (Pao2), indicating respiratory dysfunction, and metabolic acidosis as shown by the significant drop in pH, Paco2 and HCO3-. These effects caused by LTA + PepG were associated with the induction of iNOS activity in aorta, liver, kidney and lungs as well as increases in serum levels of nitrite + nitrate (total nitrite). 3 Pretreatment of rats with dexamethasone (3 mg kg-', i.p.) at 120 min before LTA + PepG administration significantly attenuated these adverse effects as well as the increases in the plasma levels of TNFa caused by LTA + PepG. The protective effects of dexamethasone were associated with a prevention of the increase in iNOS activity (in aorta, liver, lung, kidney), the expression of iNOS protein (in lungs), as well as in the increase in the plasma levels of total nitrite. 4 Treatment of rats with aminoguanidine (5 mg kg-' + 10 mg kg-h-) starting at 120 min after LTA + PepG attenuated most of the adverse effects and gave a significant inhibition of iNOS activity (in various organs) as well as an inhibition of the increase in total plasma nitrite. However, aminoguanidine did not improve renal function although this agent caused a substantial inhibition of NOS activity in the kidney. 5 Thus, an enhanced formation of NO by iNOS importantly contributes to the circulatory failure, hepatocellular injury, respiratory dysfunction and the metabolic acidosis, but not the renal failure, caused by LTA + PepG in the anaesthetized rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.