The rectilinear block packing problem is a problem of packing a set of rectilinear blocks into a larger rectangular container with fixed width and unrestricted height. A rectilinear block is a polygonal block whose interior angles are either 90 • or 270 •. The objective is to pack all the blocks into the container so as to minimize the height of the container. This problem is among classical combinatorial optimization problems and is known to be NP-hard. In this paper, we propose two exact algorithms for the rectilinear block packing problem: one is based on two IP problems and the other is based on a new solution representation. The basic idea of our algorithms is that we iteratively compute lower and upper bounds on the optimal value until the lower bound on the value of an optimal solution for the current search space becomes larger than or equal to the best upper bound found during the search by then, or the search space becomes empty, which means that an optimal solution of this problem has been found. The computational results show that both algorithms obtain five exact and one heuristic solutions for six instances. The algorithm based on a new solution representation improves the running time of the algorithm based on two IP problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.