The use of chemokine antagonism as a strategy to inhibit leukocyte trafficking into inflammatory sites requires identification of the dominant chemokines mediating recruitment. The chemokine(s) directing T cells into cardiac allografts during acute rejection remain(s) unidentified. The role of the CXC chemokines IFN-γ inducible protein 10 (IP-10) and monokine induced by IFN-γ (Mig) in acute rejection of A/J (H-2a) cardiac grafts by C57BL/6 (H-2b) recipients was tested. Intra-allograft expression of Mig was observed at day 2 posttransplant and increased to the time of rejection at day 7 posttransplant. IP-10 mRNA and protein production were 2.5- to 8-fold lower than Mig. Whereas allografts were rejected at day 7–9 in control recipients, treatment with rabbit antiserum to Mig, but not to IP-10, prolonged allograft survival up to day 19 posttransplant. At day 7 posttransplant, allografts from Mig antiserum-treated recipients had marked reduction in T cell infiltration. At the time of rejection in Mig antiserum-treated recipients (i.e., days 17–19), intra-allograft expression of macrophage-inflammatory protein-1α, -1β, and their ligand CCR5 was high, whereas expression of CXCR3, the Mig receptor, was virtually absent. Mig was produced by the allograft endothelium as well as by recipient allograft-infiltrating macrophages and neutrophils, indicating the synergistic interactions between innate and adaptive immune compartments during acute rejection. Collectively, these results indicate that Mig is a dominant recruiting factor for alloantigen-primed T cells into cardiac allografts during acute rejection. Although Mig antagonism delays acute heart allograft rejection, the results also suggest that the alloimmune response circumvents Mig antagonism through alternative mechanisms.
Highlights d Phenothiazine analog iHAP1 activates PP2A-B56ε and potently kills malignant cells d iHAP1 does not inhibit dopamine signaling or cause prohibitive neurologic toxicity d PP2A-B56ε dephosphorylates MYBL2-Ser241, causing prometaphase arrest with apoptosis d Other PP2A activators, SMAPs, activate PP2A-B55a and target different substrates
The identification of early inflammatory events after transplant in solid tissue organ grafts that may direct T cell recruitment and promote acute allograft rejection remain largely unknown. To better understand temporal aspects of early inflammatory events in vascularized organ grafts, we tested the intragraft expression of four different chemokines in heterotopically transplanted A/J (H-2a) and syngeneic heart grafts in C57BL/6 (H-2b) recipient mice from 1.5 to 48 h after transplant. Similar temporal expression patterns and equivalent levels of chemokine expression were observed in both syngeneic and allogeneic cardiac allografts during this time period. Expression of the neutrophil chemoattractant growth-related oncogene α (KC) was observed first and reached peak levels by 6 h after transplant and was followed by the monocyte/macrophage chemoattractant protein-1 (JE) and then macrophage inflammatory proteins 1β and 1α. Administration of rabbit KC antiserum to allograft recipients within 30 min of cardiac transplantation attenuated downstream events including intra-allograft expression of the T cell chemoattractants IFN-γ-inducible protein-10 and monokine induced by IFN-γ, cellular infiltration into the allograft, and graft rejection. Similarly, depletion of recipient neutrophils at the time of transplantation significantly extended allograft survival from day 8 to 10 in control-treated recipients up to day 21 after transplant. These results indicate the induction of highly organized cascades of neutrophil and macrophage chemoattractants in cardiac grafts and support the proposal that early inflammatory events are required for optimal recruitment of T cells into allografts during the progression of acute rejection of cardiac allografts.
Gene expression is regulated by promoters and enhancers marked by histone H3 lysine 27 acetylation (H3K27ac), which is established by the paralogous histone acetyltransferases (HAT) EP300 and CBP. These enzymes display overlapping regulatory roles in untransformed cells, but less characterized roles in cancer cells. We demonstrate that the majority of high-risk pediatric neuroblastoma (NB) depends on EP300, whereas CBP has a limited role. EP300 controls enhancer acetylation by interacting with TFAP2β, a transcription factor member of the lineage-defining transcriptional core regulatory circuitry (CRC) in NB. To disrupt EP300, we developed a proteolysis-targeting chimera (PROTAC) compound termed “JQAD1” that selectively targets EP300 for degradation. JQAD1 treatment causes loss of H3K27ac at CRC enhancers and rapid NB apoptosis, with limited toxicity to untransformed cells where CBP may compensate. Furthermore, JQAD1 activity is critically determined by cereblon (CRBN) expression across NB cells. Significance: EP300, but not CBP, controls oncogenic CRC-driven transcription in high-risk NB by binding TFAP2β. We developed JQAD1, a CRBN-dependent PROTAC degrader with preferential activity against EP300 and demonstrated its activity in NB. JQAD1 has limited toxicity to untransformed cells and is effective in vivo in a CRBN-dependent manner. This article is highlighted in the In This Issue feature, p. 587
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.