(1) Measurements have been made of seasonal variation in the density and composition of the reservoir of germinable seeds present in surface (0-3 cm) soil samples collected at 6-weekly intervals from ten ecologically-contrasted sites in the Sheffield region. (2) The procedure was not designed to provide a complete assessment of the seed flora, and the methods were found to be ineffective in recovering germinable seeds of those species (e.g. Endymion non-scriptus, Viola riviniana, several Umbelliferae) in which there is only a brief interval between fulfilment of a chilling requirement and the onset of germination. (3) The techniques adopted were particularly suitable for the detection of persistent seed banks (i.e. those in which some of the component seeds are at least 1 year old), and also allowed recognition of species in which there is a transient accumulation of detached germinable seeds during the summer. (4) Comparison of the results obtained for populations of the same species in different types of habitat suggests that seasonal variation in seed number is a function of the species rather than of the environment. (5) It is concluded that the major evolutionary force determining the nature of the seed bank is the selective advantage derived from mechanisms of seed dormancy and germination which allow seedlings to evade the potentially-dominating effects of established plants. (6) From the data collected in this study, four types of seed bank (Types I-IV) have been recognized, and an attempt has been made to assess their ecological significance. (7) The transient seed banks (Types I and II) are adapted to exploit the gaps created by seasonally-predictable damage and mortality in the vegetation, whilst the persistent seed bank (Type IV) confers the potential for regeneration in circumstances where disturbance of the established vegetation is temporally and/or spatially unpredictable. A second type of persistent seed bank (Type III) has characteristics intermediate between those of Types I and IV, and contains some seeds which germinate soon after release and others which are more persistent in the soil. (8) A feature of the results was the lack of a general correspondence between the species-composition of the seed flora and that of the associated vegetation. At certain sites, substantial persistent seed banks were detected for species which were either extremely scarce or did not occur at all in the established vegetation. (9) Both transient and persistent types of seed banks were represented at each of the ten sites; this is consistent with the hypothesis that complementary mechanisms of regeneration are involved in the maintenance of floristic diversity.
At the core of plant regeneration, temperature and water supply are critical drivers for seed dormancy (initiation, break) and germination. Hence, global climate change is altering these environmental cues and will preclude, delay, or enhance regeneration from seeds, as already documented in some cases. Along with compromised seedling emergence and vigour, shifts in germination phenology will influence population dynamics, and thus, species composition and diversity of communities. Altered seed maturation (including consequences for dispersal) and seed mass will have ramifications on life history traits of plants. Predicted changes in temperature and precipitation, and thus in soil moisture, will affect many components of seed persistence in soil, e.g. seed longevity, dormancy release and germination, and soil pathogen activity. More/less equitable climate will alter geographic distribution for species, but restricted migratory capacity in some will greatly limit their response. Seed traits for weedy species could evolve relatively quickly to keep pace with climate change enhancing their negative environmental and economic impact. Thus, increased research in understudied ecosystems, on key issues related to seed ecology, and on evolution of seed traits in nonweedy species is needed to more fully comprehend and plan for plant responses to global warming.
No abstract
Summary 1.Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. 2. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy-environment relationships across biomes world-wide. 3. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a 'wide geographic coverage, few traits' data set and a 'restricted coverage, many traits' subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. 4. Strong, significant concordance (RV = 0Á597; P < 0Á0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. 5. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e.g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). 6. The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy-environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.