Morphological differences between old-growth trees and saplings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross sections of previous-year needles of old-growth Douglas-fir trees and saplings at the Wind River Canopy Crane site in Washington and at three sites in the Cascade Mountains of Oregon. We also compared needle anatomy across a chronosequence of 10-, 20-, 40- and 450-year-old Douglas-fir trees from the Wind River site. Anatomy differed significantly between needles of old-growth trees and saplings at all sites, suggesting a developmental change in needle anatomy with increasing tree age. Compared with needles of old-growth trees, needles of saplings were longer and had proportionately smaller vascular cylinders, larger resin canals and few hypodermal cells. Astrosclereids, which sequester lignin in their secondary cell walls and occupy space otherwise filled by photosynthetic cells, were scarce in needles of saplings but abundant in needles of old-growth trees. Needles of old-growth trees had an average of 11% less photosynthetic mesophyll area than needles of saplings. The percentage of non-photosynthetic area in needles increased significantly with increasing tree age from the chronosequence of 10-, 20-, 40- and 450-year-old trees at the Wind River site. This reduction in photosynthetic area may contribute to decreased growth rates in old trees.
One of the most interesting aspects of this book is the frequency
at which the contributing authors are found in the references
at the end of not one, but usually several chapters: this is
by no means a mistake. Editors Hacker and Gu have assembled
a wealth of expertise from well-known individuals in the fields
of autometallography, immunogold-silver staining and molecular
morphology. Composed of 16 chapters with a total of 32 contributing
authors, the material is presented in a very well organized
and coherent format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.