Little is known about the reliability, validity and smallest detectable differences of selected kinetic and temporal variables recorded by the Zebris FDM-THQ instrumented treadmill especially during running. Twenty male participants (age = 31.9 years (±5.6), height = 1.81 m (±0.08), mass = 80.2 kg (±9.5), body mass index = 24.53 kg/m (±2.53)) walked (5 km/h) and ran (10 and 15 km/h) on an instrumented treadmill, wearing running shoes fitted with Pedar-X insoles. A test-double retest protocol was conducted over two consecutive days. Maximal vertical force (F), contact time (CT) and flight time (FT) data from 10 consecutive steps were collected. Within- and between-day reliability, smallest detectable differences (SDD) and validity (95% limits of agreement (LOA)) were calculated. ICC values for the Zebris for Fmax were acceptable (ICC ≥ 0.7) while CT and FT reliability indices were predominantly good (ICC ≥ 0.8) to excellent (ICC ≥ 0.9). The Zebris significantly underestimated Fmax when compared with the Pedar-X. The 95% LOA increased with speed. SDD ranged between 96 N and 169 N for Fmax, 0.017s and 0.055s for CT and 0.021s and 0.026s for FT. In conclusion, Zebris reliability was acceptable to excellent for the variables examined, but inferior in comparison with Pedar-X. With increased running speeds, a bias effect (underestimation) existed for the Zebris compared with Pedar-X.
ObjectiveEvaluate plantar loading during ‘on-field’ common football movements in players after fifth metatarsal (MT-5) stress fracture and compare with matched healthy players.MethodsFourteen elite male soccer players participated in the study conducted on a natural grass playing surface using firm ground football boots. Seven players who had suffered a primary stress fracture (MT-5 group) and seven matched healthy players (controls, CON) performed three common football movements while in-shoe plantar loading data were collected.ResultsLarge between-group differences exist for maximal vertical force normalised to bodyweight (Fmax) at the lateral toes (2-5) of the stance leg during a set-piece kick (MT-5: 0.2±0.06 bodyweight (BW), CON: 0.1±0.05 BW, effect size (ES) 1.4) and the curved run where the MT-5 group showed higher Fmax with very large effect size at the lateral forefoot of the injured (closest to curve) limb when running a curve to receive a pass (MT-5 injured−CON=0.01 BW, ES 1.5). Small between-group differences were evident during straight-line running. However, between-limb analysis of MT-5 group showed significant unloading of the lateral forefoot region of the involved foot.ConclusionsElite male football players who have returned to play after MT-5 stress fracture display significantly higher maximum plantar force at the lateral forefoot and lateral toes (2-5) compared with healthy matched control players during two football movements (kick and curved run) with the magnitude of these differences being very large. These findings may have important implications for manipulating regional load during rehabilitation or should a player report lateral forefoot prodromal symptoms.
This study examined the impact of custom foot orthoses made of ethyl-vinyl acetate (EVA) and expanded thermoplastic polyurethane (TPU) materials, both compared to a control condition (CON; shoes only), on mechanical asymmetries during repeated treadmill sprints. Eighteen well-trained male runners executed eight, 5-s sprints (rest: 25 s) on an instrumented motorized treadmill in three footwear conditions (EVA, TPU, and CON). We evaluated the group mean asymmetry scores using the ‘symmetry angle’ (SA) formula, which assigns a score of 0% for perfect symmetry and a score of 100% for perfect asymmetry. There was no condition (all p ≥ 0.053) or time (p ≥ 0.074) main effects, nor were there any significant time × condition interactions on SA scores for any variables (p ≥ 0.640). Mean vertical, horizontal, and total forces presented mean SA values (pooled values for the three conditions) of 2.6 ± 1.9%, 2.9 ± 1.6%, and 2.4 ± 1.8%, respectively. Mean SA scores were ~1–3% for contact time (1.5 ± 0.5%), flight time (3.0 ± 0.3%), step frequency (1.1 ± 0.5%), step length (1.9 ± 0.7%), vertical stiffness (2.1 ± 0.9%), and leg stiffness (2.4 ± 1.1%). Mean SA scores were ~2–6.5% for duration of braking (4.1 ± 1.6%) and propulsive (2.4 ± 1.0%) phases, and peak braking (6.2 ± 2.9%) and propulsive (2.1 ± 1.4%) forces. In well-trained runners facing intense fatigue, wearing custom foot orthoses did not modify the observed low-to-moderate natural stride mechanical asymmetries.
Purpose We determined the effect of custom foot orthotics manufactured from ethyl-vinyl acetate (EVA) and expanded thermoplastic polyurethane (TPU) materials, both compared to a control condition (CON; shoes only) during repeated sprints on running mechanical alterations. Methods Eighteen males performed eight, 5-s sprints with 25-s recovery on an instrumented sprint treadmill in three footwear conditions (EVA, TPU and CON). Mechanical data consisted of continuous (step-by-step) measurement of running kinetics and kinematics, which were averaged for each sprint for further analysis. Results Distance ran in 5 s decreased from first to last sprint (P < 0.001), yet with higher sprints 1-8 values for both EVA (P = 0.004) and TPU (P = 0.018) versus CON. Regardless of footwear condition, mean horizontal forces, step frequency, vertical and leg stiffness decreased from sprint 1 to sprint 8 (all P < 0.001). Duration of the propulsive phase was globally shorter for both EVA (P = 0.002) and TPU (P = 0.021) versus CON, while braking phase duration was similar (P = 0.919). In the horizontal direction, peak propulsive (P < 0.001), but not braking (P = 0.172), forces also decreased from sprint 1 to sprint 8, independently of conditions. Conclusion Compared to shoe only, wearing EVA or TPU custom foot orthotics improved repeated treadmill sprint ability, yet provided similar fatigue-induced changes in mechanical outcomes. Keyword Insoles • Instrumented treadmill • Running kinematics • Leg-spring behaviour Abbreviations ANOVA Repeated-measures analysis of variance CFO Custom foot orthotics CON Control condition EVA Ethyl-vinyl acetate GRF Ground reaction forces RPE Ratings of perceived exertion RSE Repeated sprint exercise TPU Thermoplastic polyurethane
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.