This review summarizes recent advances concerning the Nedd8 regulatory pathway in four areas. One, substantial progress has been made in delineating the role of cullin family proteins, the only known substrates of the Nedd8 modification system. Cullins are molecular scaffolds responsible for assembling the ROC1/Rbx1 RING-based E3 ubiquitin ligases, of which several play a direct role in tumorigenesis. Two, a large body of work has helped elucidate the molecular details underlying the Nedd8 modification reaction, which results in covalent conjugation of a Nedd8 moiety onto a conserved cullin lysine residue. Three, studies using a variety of genetic model systems have established an essential role for Nedd8 in cell cycle control and in embryogenesis by upregulating the activities of cullin-based E3 ligases. In vitro experiments have revealed a direct role for Nedd8 in activating ubiquitination. Construction of a model of the ROC1/ Rbx1-CUL1-Nedd8 structure suggests a mechanism by which the cullin-linked Nedd8 may assist the neighboring ROC1/Rbx1 in landing and positioning the E2 conjugating enzyme for the ubiquitin transfer reaction. Finally, increasing evidence indicates that removal of Nedd8 from its cullin targets, by the action of COP9 Signalosome and possibly other proteases, plays a significant role in the regulation of cullin-mediated proteolysis.
Activation of the transcription factor NF-kappa B in response to proinflammatory stimuli requires the phosphorylation-triggered and ubiquitin-dependent degradation of the NF-kappa B inhibitor, I kappa B alpha. Here, we show the in vitro reconstitution of the phosphorylation-dependent ubiquitination of I kappa B alpha with purified components. ROC1, a novel SCF-associated protein, is recruited by cullin 1 to form a quatemary SCFHOS-ROC1 holenzyme (with Skp1 and the beta-TRCP homolog HOS). SCFHOS-ROC1 binds IKK beta-phosphorylated I kappa B alpha and catalyzes its ubiquitination in the presence of ubiquitin, E1, and Cdc34. ROC1 plays a unique role in the ubiquitination reaction by heterodimerizing with cullin 1 to catalyze ubiquitin polymerization.
Nedd8 activates ubiquitination by increasing the efficiency of polyubiquitin chain assembly through its covalent conjugation to cullin molecules. Here we report the isolation, cloning, and characterization of a novel human Nedd8-specific protease called DEN1. Human DEN1 is encoded by AAH31411.1, a previously uncharacterized protein of 212 amino acids that shares homology with the Ulp1 cysteinyl SUMO deconjugating enzyme family. Recombinant human DEN1, purified from bacteria, selectively binds to Nedd8 and hydrolyzes Cterminal derivatives of Nedd8. Interestingly, DEN1 deconjugates cullin 1 (CUL1)-Nedd8 in a concentration-dependent manner. At a low concentration, DEN1 processes hyper-neddylated CUL1 to yield a mononeddylated form, which presumably contains the Lys-720 CUL1 -Nedd8 linkage. At elevated concentrations, DEN1 is able to complete the removal of Nedd8 from CUL1. These activities distinguish DEN1 from the COP9 signalosome, which is capable of efficiently cleaving the Lys-720 CUL1 -Nedd8 conjugate, but lacks Nedd8 Cterminal hydrolytic activity and poorly processes hyperneddylated CUL1. These results suggest a unique role for DEN1 in regulating the modification of cullins by Nedd8.Nedd8 is a small ubiquitin (Ub) 1 -like protein that plays a critical regulatory role in cell proliferation and development. In fission yeast, Nedd8 is essential for cell viability (1). In animals, Nedd8 is required for development as inactivation of the Nedd8 pathway in either mouse (2) or Drosophila (3) results in embryonic lethality. The critical biological function of Nedd8 is conferred by its biochemical activity as a protein modifier, being covalently attached to nearly all members of the cullin family (4). This modification, neddylation, is reminiscent of the ubiquitination reaction. Neddylation occurs by the formation of an isopeptide-bond linking the ⑀-amino group of a conserved lysine residue typically within the C terminus of a cullin to the carboxyl-end of Nedd8 Gly-76 (5). The enzyme components of the neddylation reaction include a Nedd8-specific E1 activating enzyme comprised of the APP-BP1/Uba3 heterodimer, an E2 conjugating enzyme known as Ubc12 (6), and the ROC1/Rbx1 RING finger protein (7).Using in vitro systems, several studies have shown that Nedd8 activates the ubiquitination of IB␣ (8) or p27 (9), through its conjugation to cullin 1 (CUL1). These reactions are mediated by SCF E3 Ub ligases, in which CUL1 functions as a molecular scaffold (10 -12). Subsequently, it was observed that degradation of HIF-␣ by von Hippel-Lindau tumor suppressor required Nedd8 (13). In this case, Nedd8 was conjugated to CUL2 that assembles the von Hippel-Lindau protein E3 Ub ligase (reviewed in Ref. 14). These studies thus suggest a role for Nedd8 in the assembly of an active cullin-based E3 Ub ligase.We initially reported that conjugation of Nedd8 to CUL1 increases the ability of ROC1-CUL1, a sub-complex within the SCF E3 Ub ligase, to assemble polyubiquitin chains in a reaction catalyzed by the Cdc34 E2 conjugating enzyme (15). S...
To identify deneddylases, proteases with specificity for hydrolysis of Nedd8 derivatives, a facile method was developed for the synthesis of Nedd8 amidomethylcoumarin (a substrate) and Nedd8 vinyl sulfone (an inhibitor). Deneddylase activity is necessary to reverse the conjugation of Nedd8 to cullin, a modification that regulates at least some ubiquitin ligases. The reaction of Nedd8 vinyl sulfone with L-M(TK ؊ ) mouse fibroblast lysates identified two deneddylases. The deubiquitinating enzyme UCH-L3 is labeled by both ubiquitin vinyl sulfone and Nedd8 vinyl sulfone. In contrast, a second and more selective enzyme is labeled only by Nedd8 vinyl sulfone. This protein, DEN1, is a 221-amino acid thiol protease that is encoded by an open reading frame previously annotated as SENP8. Recombinant human DEN1 shows significant specificity for Nedd8 and catalyzes the hydrolysis of Nedd8 amidomethylcoumarin with a K m of 51 nM and a k cat of 7 s ؊1 . The catalytic efficiency of DEN1 acting upon ubiquitin amidomethylcoumarin is 6 ؋ 10 ؊4 that of Nedd8 amidomethylcoumarin and its activity on SUMO-1 amidomethylcoumarin is undetectable. This selectivity was unexpected as DEN1 is most closely related to enzymes that catalyze desumoylation. This observation expands to four the number of DUB families with members that can process the C terminus of Nedd8. Ubiquitin (Ub)1 and the ubiquitin-like proteins (Ubl) constitute a family of proteins that are post-translationally conjugated to other proteins to target them for specific localization (1-4). Thus, attachment of a Lys 48 -linked polyubiquitin chain targets proteins to the proteasome, the multicatalytic proteinase that is responsible for most regulated intracellular proteolysis (5, 6). Ubiquitination is also involved in numerous other processes, including DNA repair, establishment, and maintenance of chromatin structure, receptor internalization, and sorting, and modulation of signal transduction pathways (5, 7). All ubiquitin-like proteins are activated by evolutionarily related E1 enzymes, and passed on (as thiol esters) to a family of E2 conjugating enzymes. In some cases this E2-ubiquitin thiol ester can directly catalyze ubiquitination, whereas in most cases a third enzyme, the ubiquitin ligase, is required to conjugate ubiquitin (and ubiquitin-like proteins) to the target protein (7).Several ubiquitin-like proteins are also conjugated to other proteins and likewise act as targeting signals for the attached proteins (8,9). Nedd8 is about 50% identical to ubiquitin and its conjugation to the cullin component of several ubiquitin ligases is thought to increase the efficiency of polyubiquitination (4). SUMO-1, -2, and -3 are closely related proteins with about 20% identity to ubiquitin that are attached to numerous proteins in the nucleus and to septins that accumulate at the bud neck of yeast (2, 10 -12). Whereas the precise sites of localization and the mechanisms by which it is accomplished are not known, several important cellular regulators are sumoylated. These include p5...
The SCF-ROC1 ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase complex targets the ubiquitination and subsequent degradation of protein substrates required for the regulation of cell cycle progression and signal transduction pathways. We have previously shown that ROC1-CUL1 is a core subassembly within the SCF-ROC1 complex, capable of supporting the polymerization of ubiquitin. This report describes that the CUL1 subunit of the bacterially expressed, unmodified ROC1-CUL1 complex is conjugated with Nedd8 at Lys-720 by HeLa cell extracts or by a purified Nedd8 conjugation system (consisting of APP-BP1/Uba3, Ubc12, and Nedd8). This covalent linkage of Nedd8 to CUL1 is both necessary and sufficient to markedly enhance the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. A mutation of Lys-720 to arginine in CUL1 eliminates the Nedd8 modification, abolishes the activation of the ROC1-CUL1 ubiquitin ligase complex, and significantly reduces the ability of SCF HOS/-TRCP -ROC1 to support the ubiquitination of phosphorylated IB␣. Thus, although regulation of the SCF-ROC1 action has been previously shown to preside at the level of recognition of a phosphorylated substrate, we demonstrate that Nedd8 is a novel regulator of the efficiency of polyubiquitin chain synthesis and, hence, promotes rapid turnover of protein substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.