The With-No-Lysine (K) (WNK) kinases play a critical role in blood pressure regulation and body fluid and electrolyte homeostasis. Herein, we introduce the first orally bioavailable pan-WNK-kinase inhibitor, WNK463, that exploits unique structural features of the WNK kinases for both affinity and kinase selectivity. In rodent models of hypertension, WNK463 affects blood pressure and body fluid and electro-lyte homeostasis, consistent with WNK-kinase-associated physiology and pathophysiology.
The total synthesis of (+)-duocarmycin A and SA through a common indoline intermediate is described. The key reactions include selective lithiation of a 2,6-dibromoiodobenzene derivative and diastereoselective addition to a chiral nitroalkene, copper-mediated aryl amination, and addition of aryllithium to azlactones.
A unique combination of copper iodide and cesium acetate was found to mediate intramolecular amination of aryl halides under mild conditions. The reaction proceeds at room temperature with primary or N-benzyl amines and at moderately elevated temperatures with other amine derivatives. The reaction has been applied to the formation of 5-, 6-, and 7-membered rings. Remarkably, halogens at the meta-position were retained, providing a definitive advantage over palladium-catalyzed systems.
The observed structure-activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for in vivo proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirming that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.