Abstract--The charge of the expandable interlayers in a series of fourteen diagenetic illite/smectites (I/ S) from lower Paleozoic K-bentonites was determined by the alkylammonium ion exchange method. The magnitude (<0.50 equivalents per half formula unit) and characteristic heterogeneous distribution of interlayer charges in eight samples with expandabilities from 70% to about 15% confirm the smectitic character of the expandable interlayers in this range. This result coupled with the lack of a correlation between expandability and interlayer charge is consistent with the hypothesis of a layer-by-layer transformation from a precursor smectite to highly illitic I/S clays during K-bentonite diagenesis. The charge of the expandable interlayers in I/S samples with about 10% or less expandabilities have been inferred to be vermiculitic rather than smectitic. The K-fixed interlayers and expandable interlayers in these samples appear to be similar in charge. The significantly higher charges inferred for the highly illitic samples can be consistent both with a layer-by-layer transformation and the neoformation mechanisms proposed in the literature for the formation of illite.
--High resolution transmission electron microscopy (HRTEM) have been performed on dispersed portions of one R > 1 and two R3 illite/smectite (I/S) samples from Silurian K-bentonites. R > 1 sample was studied by HRTEM before and after alkylammonium ion treatment and R3 samples were studied only after alkylammonium ion treatment. The HRTEM images of the chemically untreated R > 1 sample were predominated by lattice fringe contrast with 20-40/~ periods, interpreted to represent various ordered I/S units. HRTEM images of the three alkylammonium-treated samples displayed very small, dispersed particles composed of iilite packets separated by alkylammonium expanded interlayers. In the R > 1 sample, iUite packets were mostly 20/~ to 40 A thick whereas in R3 samples they were predominantly over 40 A. Although a good degree of dispersion of the bulk samples was achieved, dispersed particles recorded on images were thicker than the fundamental particles postulated by Nadeau and coworkers. Alkylammonium ion-expanded interlayer thicknesses point out a trend toward a higher charge in the expandable interlayers (i.e., illite particle surfaces) with increasing illite content from the R > 1 sample to the R3 samples. In the R3 samples, the interlayer charge is sufficiently high to be vermiculitic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.