Abstract. The unknotting number of a knot is the minimum number of crossings one must change to turn that knot into the unknot. The algebraic unknotting number is the minimum number of crossing changes needed to transform a knot into an Alexander polynomial-one knot. We work with a generalization of unknotting number due to Mathieu-Domergue, which we call the untwisting number. The untwisting number is the minimum number (over all diagrams of a knot) of rightor left-handed twists on even numbers of strands of a knot, with half of the strands oriented in each direction, necessary to transform that knot into the unknot. We show that the algebraic untwisting number is equal to the algebraic unknotting number. However, we also exhibit several families of knots for which the difference between the unknotting and untwisting numbers is arbitrarily large, even when we only allow twists on a fixed number of strands or fewer.
In its December 2019 edition, the Notices of the American Mathematical Society published an essay critical of the use of diversity statements in academic hiring. The publication of this essay prompted many responses, including three public letters circulated within the mathematical sciences community. Each letter was signed by hundreds of people and was published online, also by the American Mathematical Society. We report on a study of the signatories' demographics, which we infer using a crowdsourcing approach. Letter A highlights diversity and social justice. The pool of signatories contains relatively more individuals inferred to be women and/or members of underrepresented ethnic groups. Moreover, this pool is diverse with respect to the levels of professional security and types of academic institutions represented. Letter B does not comment on diversity, but rather, asks for discussion and debate. This letter was signed by a strong majority of individuals inferred to be white men in professionally secure positions at highly research intensive universities. Letter C speaks out specifically against diversity statements, calling them "a mistake," and claiming that their usage during early stages of faculty hiring "diminishes mathematical achievement." Individuals who signed both Letters B and C, that is, signatories who both privilege debate and oppose diversity statements, are overwhelmingly inferred to be tenured white men at highly research intensive universities. Our empirical results are consistent with theories of power drawn from the social sciences.
The unknotting number of a knot is the minimum number of crossings one must change to turn that knot into the unknot. We work with a generalization of unknotting number due to Mathieu-Domergue, which we call the untwisting number. The p-untwisting number is the minimum number (over all diagrams of a knot) of full twists on at most 2p strands of a knot, with half of the strands oriented in each direction, necessary to transform that knot into the unknot. In previous work, we showed that the unknotting and untwisting numbers can be arbitrarily different. In this paper, we show that a common route for obstructing low unknotting number, the Montesinos trick, does not generalize to the untwisting number. However, we use a different approach to get conditions on the Heegaard Floer correction terms of the branched double cover of a knot with untwisting number one. This allows us to obstruct several 10 and 11-crossing knots from being unknotted by a single positive or negative twist. We also use the Ozsváth-Szabó tau invariant and the Rasmussen s invariant to differentiate between the p-and q-untwisting numbers for certain p, q > 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.