Abstract. We introduce Runtime Verification with Particle Filtering (RVPF), a powerful and versatile method for controlling the tradeoff between uncertainty and overhead in runtime verification. Overhead and accuracy are controlled by adjusting the frequency and duration of observation gaps, during which program events are not monitored, and by adjusting the number of particles used in the RVPF algorithm. We succinctly represent the program model, the program monitor, their interaction, and their observations as a dynamic Bayesian network (DBN). Our formulation of RVPF in terms of DBNs is essential for a proper formalization of peek events: low-cost observations of parts of the program state, which are performed probabilistically at the end of observation gaps. Peek events provide information that our algorithm uses to reduce the uncertainty in the monitor state after gaps.We estimate the internal state of the DBN using particle filtering (PF) with sequential importance resampling (SIR). PF uses a collection of conceptual particles (random samples) to estimate the probability distribution for the system's current state: the probability of a state is given by the sum of the importance weights of the particles in that state. After an observed event, each particle chooses a state transition to execute by sampling the DBN's joint transition probability distribution; particles are then redistributed among the states that best predicted the current observation. SIR exploits the DBN structure and the current observation to reduce the variance of the PF and increase its performance.We experimentally compare the overhead and accuracy of our RVPF algorithm with two previous approaches to runtime verification with state estimation: an exact algorithm based on the forward algorithm for HMMs, and an approximate version of that algorithm, which uses precomputation to reduce runtime overhead. Our results confim RVPF's versatility, showing how it can be used to control the tradeoff between execution time and memory usage while, at the same time, being the most accurate of the three algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.