Plasmonic metal oxide nanocrystals are interesting electrochromic materials because they display high modulation of infrared light, fast switching kinetics, and durability. Nanocrystals facilitate solution-based and high-throughput deposition, but typically require handling hazardous nonaqueous solvents and further processing of the as-deposited film with energy-intensive or chemical treatments. We report on a method to produce aqueous dispersions of tin-doped indium oxide (ITO) by refunctionalizing the nanocrystal surface, previously stripped of its native hydrophobic ligands, with a hydrophilic poly(acrylic acid) polymer featuring a low density of methoxy-terminated poly(ethylene oxide) grafts (PAA-mPEO4). To determine conditions favoring the adsorption of PAA-mPEO4 on ITO, we varied the pH and chemical species present in the exchange solution. The extent of polymer wrapping on the nanocrystal surface can be tuned as a function of the pH to prevent aggregation in solution and deposit uniform, smooth, and optical quality spray coated thin films. We demonstrate the utility of polymer-wrapped ITO nanocrystal thin films as an electrochromic material and achieve fast, stable, and reversible near-infrared modulation without the need to remove the polymer after deposition provided that a wrapping density of ∼20% by mass is not exceeded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.