709
SummaryEthanol from lignocellulosic biomass is being pursued as an alternative to petroleum-based transportation fuels. To succeed in this endeavour, efficient digestion of cellulose into monomeric sugar streams is a key step. Current production systems for cellulase enzymes, i.e. fungi and bacteria, cannot meet the cost and huge volume requirements of this commodity-based industry. Transgenic maize ( Zea mays L.) seed containing cellulase protein in embryo tissue, with protein localized to the endoplasmic reticulum, cell wall or vacuole, allows the recovery of commercial amounts of enzyme. E1 cellulase, an endo-β -1,4-glucanase from Acidothermus cellulolyticus , was recovered at levels greater than 16% total soluble protein (TSP) in single seed. More significantly, cellobiohydrolase I (CBH I), an exocellulase from Trichoderma reesei , also accumulated to levels greater than 16% TSP in single seed, nearly 1000-fold higher than the expression in any other plant reported in the literature. The catalytic domain was the dominant form of E1 that was detected in the endoplasmic reticulum and vacuole, whereas CBH I holoenzyme was present in the cell wall.With one exception, individual transgenic events contained single inserts. Recovery of high levels of enzyme in T 2 ears demonstrated that expression is likely to be stable over multiple generations. The enzymes were active in cleaving soluble substrate.
Summary
Using plants as biofactories for industrial enzymes is a developing technology. The application of this technology to plant biomass conversion for biofuels and biobased products has potential for significantly lowering the cost of these products because of lower enzyme production costs. However, the concentration of the enzymes in plant tissue must be high to realize this goal. We describe the enhancement of the accumulation of cellulases in transgenic maize seed as a part of the process to lower the cost of these dominant enzymes for the bioconversion process. We have used breeding to move these genes into elite and high oil germplasm to enhance protein accumulation in grain. We have also explored processing of the grain to isolate the germ, which preferentially contains the enzymes, to further enhance recovery of enzyme on a dry weight basis of raw materials. The enzymes are active on microcrystalline cellulose to release glucose and cellobiose.
In an effort to understand the role of hydroxyproline-rich glycoproteins (HRGPs) in plant cell wall structure, we studied the distribution and physical properties of PC-1-like proteins (PC-1 being the major pericarp HRGP) throughout sporophytic tissues of two maize (Zea mays L.) varieties. We determined total amounts of hydroxyproline, an indicator of HRGPs, and did tissue print and Western blot analysis. We found hydroxyproline in cell walls of stems, leaves, roots, tassels, and silks. We also observed reactivity of anti-PC-1 monoclonal antibodies with anatomical prints of these tissues on nitrocellulose paper. Stem nodes and silks contained the most hydroxyproline and exhibited the strongest reaction with the antibody. PC-1 was localized in vascular bundles and the epidermis of stem tissue.
The technology of converting lignocellulose to biofuels has advanced swiftly over the past few years, and enzymes are a significant constituent of this technology. In this regard, cost effective production of cellulases has been the focus of research for many years. One approach to reach cost targets of these enzymes involves the use of plants as bio-factories. The application of this technology to plant biomass conversion for biofuels and biobased products has the potential for significantly lowering the cost of these products due to lower enzyme production costs. Cel6A, one of the two cellobiohydrolases (CBH II) produced by Hypocrea jecorina, is an exoglucanase that cleaves primarily cellobiose units from the non-reducing end of cellulose microfibrils. In this work we describe the expression of Cel6A in maize endosperm as part of the process to lower the cost of this dominant enzyme for the bioconversion process. The enzyme is active on microcrystalline cellulose as exponential microbial growth was observed in the mixture of cellulose, cellulases, yeast and Cel6A, Cel7A (endoglucanase), and Cel5A (cellobiohydrolase I) expressed in maize seeds. We quantify the amount accumulated and the activity of the enzyme. Cel6A expressed in maize endosperm was purified to homogeneity and verified using peptide mass finger printing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.