Cover crops can provide a variety of benefits to an agricultural system: weed suppression, soil quality improvement, and soil water infiltration. Although there is ample research documenting weed suppression from cover crops, the mechanics of the suppression are not implicitly understood. Along with the aforementioned positive attributes, negative allelopathic effects on row crops planted into cover crop systems have been documented. The objective of this study was to evaluate the allelopathic potential of certain cover crop species on soybean (Glycine max L.) and goosegrass (Eleusine indica L.) germination and early seedling growth under controlled environments in petri dish and pot experiments. Leachates from above-ground biomass of five cover crop species, wheat (Triticum aestivum L.), cereal rye (Secale cereale), hairy vetch (Vicia villosa), crimson clover (Trifolium incarnatum L.), and canola (Brassica napus L.), from two locations (East and Middle Tennessee) were extracted and applied at 0 (water) and 50 v/v. In experiment I, both soybean and goosegrass seeds were examined, and, in experiment II, only soybean seeds were examined under the application of cover crop leachates. Most cover crop leachates from both locations significantly reduced the soybean seedling root length (p < 0.01). Overall, the application of canola extract (East Tennessee) suppressed soybean seed germination the most (28%) compared to deionized water. For goosegrass, the wheat cover crop leachate significantly reduced seedling root length (p < 0.01). In experiment II, the soybean root nodulation was significantly increased with the wheat extract treatment compared to deionized water. While the results indicate that the location and environment may change cover crop species allelopathic potential, the wheat cover crop leachate had the most potent allelopathic impact on goosegrass germination and growth; however, had the lowest observed adverse effect on our tested row crop, soybean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.