HIV+ women have increased cognitive vulnerabilities to anticholinergic, anxiolytic/anticonvulsant, and opioid medications. Potential synergy between these medications and HIV may explain some HIV-related cognitive impairments. It may be important clinically to consider these specific types of medications as a contributor to impaired cognitive performance in HIV+ women and assess the cost/benefit of treatment dosage for underlying conditions.
Rationale: Rifapentine has been investigated at various doses, frequencies, and dosing algorithms but clarity on the optimal dosing approach is lacking. Objectives: In this individual participant data meta-analysis of rifapentine pharmacokinetics, we characterize rifapentine population pharmacokinetics, including autoinduction, and determine optimal dosing strategies for short-course rifapentine-based regimens for latent tuberculosis infection. Methods: Rifapentine pharmacokinetic studies were identified though a systematic review of literature. Individual plasma concentrations were pooled, and non-linear mixed effects modeling was performed. A subset of data was reserved for external validation. Simulations were performed under various dosing conditions including current weight-based methods and alternative methods driven by identified covariates. Measurements and Main Results: We identified 9 clinical studies with a total of 863 participants with pharmacokinetic data (n=4301 plasma samples). Rifapentine population pharmacokinetics were described successfully with a one-compartment distribution model. Autoinduction of clearance was driven by rifapentine plasma concentration. The maximum effect was a 72% increase in clearance and was reached after 21 days. Drug bioavailability decreased by 27% with HIV infection, decreased by 28% with fasting, and increased by 49% with a highfat meal. Body weight was not a clinically relevant predictor of clearance. Pharmacokinetic simulations showed that current weight-based dosing leads to lower exposures in low weight individuals, which can be overcome with flat dosing. In HIV-positive patients, 30% higher doses are required to match drug exposure in HIV-negative patients. 2 Conclusions: Weight-based dosing of rifapentine should be removed from clinical guidelines and higher doses for HIV-positive patients should be considered to provide equivalent efficacy.
Background
Moxifloxacin is a priority recommended drug for rifampin-resistant tuberculosis (RR-TB) treatment, but there is limited pediatric pharmacokinetic and safety data, especially in young children. We characterize moxifloxacin population pharmacokinetics, QT-interval prolongation and evaluate optimal dosing in children with RR-TB.
Methods
Pharmacokinetic data were pooled from two observational studies in South African children 0-17 years of age with RR-TB routinely treated with oral moxifloxacin once daily. The population pharmacokinetics and Fridericia-corrected QT (QTcF)-interval prolongation were characterized in NONMEM. Pharmacokinetic simulations were performed to predict expected exposure and optimal weight-banded dosing.
Results
Eighty-five children contributed pharmacokinetic data (median [range] age of 4.6 [0.8-15] years); 16 (19%) were <2 years of age, and 8 (9%) were HIV-positive. The median (range) moxifloxacin dose on pharmacokinetic sampling days was 11 mg/kg (6.1 to 17). Apparent clearance was 6.95 L/h for a typical 16 kg child. Stunting and HIV infection increased apparent clearance. Crushed or suspended tablets had faster absorption. The median (range) maximum change in QTcF after moxifloxacin administration was 16.3 (-27.7 to 61.3) ms. No child had QTcF ≥ 500 ms. The concentration-QTcF relationship was nonlinear, with a maximum drug effect (Emax) of 8.80 ms (inter-individual variability = 9.75 ms). Clofazimine use increased Emax by 3.3-fold. Model-based simulations of moxifloxacin pharmacokinetics predicted that current dosing recommendations are too low in children.
Conclusions
Moxifloxacin doses above 10-15 mg/kg are likely required in young children to match adult exposures but require further safety assessment, especially when co-administered with other QT-prolonging agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.