A comprehensive assessment of the environmental risks posed by engineered nanomaterials (ENMs) entering the environment is necessary, due in part to the recent predictions of ENM release quantities and because ENMs have been identified in waste leachate. The technical complexity of measuring ENM fate and transport processes in all environments necessitates identifying trends in ENM processes. Emerging information on the environmental fate and toxicity of many ENMs was collected to provide a better understanding of their environmental implications. Little research has been conducted on the fate of ENMs in the atmosphere; however, most studies indicate that ENMs will in general have limited transport in the atmosphere due to rapid settling. Studies of ENM fate in realistic aquatic media indicates that in general, ENMs are more stable in freshwater and stormwater than in seawater or groundwater, suggesting that transport may be higher in freshwater than in seawater. ENMs in saline waters generally sediment out over the course of hours to days, leading to likely accumulation in sediments. Dissolution is significant for specific ENMs (e.g., Ag, ZnO, copper ENMs, nano zero-valent iron), which can result in their transformation from nanoparticles to ions, but the metal ions pose their own toxicity concerns. In soil, the fate of ENMs is strongly dependent on the size of the ENM aggregates, groundwater chemistry, as well as the pore size and soil particle size. Most groundwater studies have focused on unfavorable deposition conditions, but that is unlikely to be the case in many natural groundwaters with significant ionic strength due to hardness or salinity. While much still needs to be better understood, emerging patterns with regards to ENM fate, transport, and exposure combined with emerging information on toxicity indicate that risk is low for most ENMs, though current exposure estimates compared with current data on toxicity indicates that at current production and release levels, exposure to Ag, nZVI, and ZnO may cause toxicity to freshwater and marine species.
We developed a dynamic multimedia fate and transport model (nanoFate) to predict the time-dependent accumulation of metallic engineered nanomaterials (ENMs) across environmental media. nanoFate considers a wider range of processes and environmental subcompartments than most previous models and considers ENM releases to compartments (e.g., urban, agriculture) in a manner that reflects their different patterns of use and disposal. As an example, we simulated ten years of release of nano CeO 2 , CuO, TiO 2 , and ZnO in the San Francisco Bay area. Results show that even soluble metal oxide ENMs may accumulate as nanoparticles in the environment in sufficient concentrations to exceed the minimum toxic threshold in freshwater and some soils, though this is more likely with high-production ENMs such as TiO 2 and ZnO. Fluctuations in weather and release scenario may lead to circumstances where predicted ENM concentrations approach acute toxic concentrations. The fate of these ENMs is to mostly remain either aggregated or dissolved in agricultural lands receiving biosolids and in freshwater or marine sediments. Comparison to previous studies indicates the importance of some key model aspects including climatic and temporal variations, how ENMs may be released into the environment, and the effect of compartment composition on predicted concentrations.
A B S T R A C TGiven increasing use of copper-based nanomaterials, particularly in applications with direct release, it is imperative to understand their human and ecological risks. A comprehensive and systematic approach was used to determine toxicity and fate of several Cu nanoparticles (Cu NPs). When used as pesticides in agriculture, Cu NPs effectively control pests. However, even at low (5-20 mg Cu/plant) doses, there are metabolic effects due to the accumulation of Cu and generation of reactive oxygen species (ROS). Embedded in antifouling paints, Cu NPs are released as dissolved Cu + 2 and in nano-and micron-scale particles. Once released, Cu NPs can rapidly (hours to weeks) oxidize, dissolve, and form CuS and other insoluble Cu compounds, depending on water chemistry (e.g. salinity, alkalinity, organic matter content, presence of sulfide and other complexing ions). More than 95% of Cu released into the environment will enter soil and aquatic sediments, where it may accumulate to potentially toxic levels (> 50-500 μg/L). Toxicity of Cu compounds was generally ranked by high throughput assays as: Cu + 2 > nano Cu(0) > nano Cu(OH) 2 > nano CuO > micron-scale Cu compounds. In addition to ROS generation, Cu NPs can damage DNA plasmids and affect embryo hatching enzymes. Toxic effects are observed at much lower concentrations for aquatic organisms, particularly freshwater daphnids and marine amphipods, than for terrestrial organisms. This knowledge will serve to predict environmental risks, assess impacts, and develop approaches to mitigate harm while promoting beneficial uses of Cu NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.