The characteristics of HCCI engines were numerically investigated by CHEMKIN software, CHEMKIN 4.0. Cylinder temperature and pressure, ignition delay time, peak temperature and pressure, indicated work, indicated power and IMEP were performed for the analysis the HCCI combustion of Methane and Hydrogen. The natural gas can be represented as the Methane (CH4), which is the main ingredient. The simulation evaluations were done by increasing the initial concentrations of H2, changing the initial temperature (inlet temperature), or varying the equivalence ratio. The numerical simulations were accomplished using CHEMKIN Suite from Reaction Design and the results are focused on ignition time, peak temperature, and indicated power. The effect of hydrogen addition to methane increases peak temperature and pressure, decreases ignition delay time, and increases indicated power.
This paper presents our recent investigation on the impact of 3D haptic-augmented learning tools on Dynamics, which is a basic course in most of the engineering education program. Dynamics is considered to be one of the most difficult and non-intuitive courses that engineering students encounter during their undergraduate study because the course combines basic Newtonian physics and various mathematical concepts such as vector algebra, geometry, trigonometry, and calculus and these were applied to dynamical systems. Recent advances in Virtual Reality and robotics enable the human tactual system to be stimulated in a controlled manner through 3-dimensional (3D) force feedback devices, a.k.a. haptic interfaces. In this study, 3D haptic-augmented learning tools are created and used to complement the course materials in Dynamics course. Experiments are conducted with a group of Mechanical Engineering students in the Dynamics class. The assessment result shows that the innovative learning tools: 1) allow the students to interact with virtual objects with force feedback and better understand the abstract concepts by investigating the dynamics responses; 2) stimulate the students’ learning interests in understanding the fundamental physics theories.
Wind energy is one of the prominent resources for renewable energy and it is traditionally extracted using stationary wind turbines. However, it can also be extracted using mini or micro wind turbines on a moving body, such as an automobile, while cruising at high speeds on freeways. If the electricity is produced using air flowing around the vehicle without affecting aerodynamic performance of the vehicle, it can be used to charge up the battery or power up additional accessories of the vehicle. For the first time, in the present work, a preliminary investigation was carried out to generate electricity by utilizing air flow on a moving car. Initially, a correlation between the car speed and wind velocity was established using an anemometer. Placing a set of two micro wind turbines along with two micro generators on the rear end of the car trunk, the present study investigated the feasibility of generating electricity from these micro wind turbines while evaluating the effect of drag force on the performance of the car through the experimental approach and computational fluid dynamics (CFD) simulations. Both approaches confirmed negligible effect of drag force on the vehicle performance in terms of gas mileage and changes in drag coefficient values. Following these studies, the micro wind turbines were also tested for electricity generation at various cruising speeds of the car ranging from 50 to 80 mph on the freeways. The voltage and power generated always showed an increasing trend with increasing the car speed, however they saturated when a cut off limit was setup with the voltage controllers. A maximum voltage of 3.5 V and a maximum current of 0.8 A were generated by each micro wind turbine when a cut off limit was used along with a load consisting of four LED bulbs in parallel with 3.5 V and 0.2 A rating each. On the other hand, when the tests were repeated without using the cut-off limit, a maximum voltage of 18.91 V and a maximum current of 0.65 A were recorded with a load of six flash bulbs in series (flash bulb rating – 4.8 V and 0.5 A each). These studies clearly demonstrate the flexibility to vary the voltage and current outputs from the micro wind turbines indicating a possibility for utilizing the wind energy on the cars at high speeds.Article History: Received Sept 5th 2016; Received in revised form Dec 6th 2016 ; Accepted January 4th 2017; Available onlineHow to Cite This Article: Bangi, V.K.T., Chaudhary, Y., Guduru, R.K., Aung, K.T and Reddy, G.N. (2017) Preliminary investigation on generation of electricity using micro wind turbines placed on a car. Int. Journal of Renewable Energy Development, 6(1), 75-81.http://dx.doi.org/10.14710/ijred.6.1.75-81
In recent years, renewable energy resources have become significant contributors to energy usage among both developed and developing countries. New textbooks dealing with alternative and renewable energy resources have been published recently. Many universities have also started offering classes on renewable and alternative energy course to both undergraduate and graduate students. Simulation and analysis tools on these alternative energy resources may be useful in conducting these classes. This paper compares some of these simulation tools and evaluates their effectiveness based on their use during an elective course at Lamar University. During the course, the students are required to complete a design project on one of the renewable energy sources such as solar, wind, and geothermal. Some of the simulation tools considered in this paper includes Solar Advisor Model (SAM) from National Renewable Energy Lab (NREL), RETScreen software from Natural Resources Canada, and PolySun from Vela Solaris. Several sample projects on photovoltaic, wind energy, solar water heating and geothermal energy systems were modeled and simulated using these software tools. The comparison and evaluation were done based on various aspects of these tools such as modeling, product databases, validation, and economic analysis. All software tools provide effective modeling and simulation capabilities suitable for class room use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.