The development of fast algorithms for performing computations with n × n low-rank structured matrices has been a very active area of research during the last two decades, as a consequence of the numerous applications where these matrices arise. The key ideas behind these fast algorithms are that low-rank structured matrices can be described in terms of O(n) parameters and that these algorithms operate on the parameters instead on the matrix entries. Therefore, the sensitivity of any computed quantity should be measured with respect to the possible variations that the parameters dening these matrices may suer, since this determines the maximum accuracy of a given fast computation. In other words, it is necessary to develop condition numbers with respect to parameters for dierent magnitudes and classes of low-rank structured matrices, but, as far as we know, this has not yet been accomplished in any case. In this paper, we derive structured relative eigenvalue condition numbers for the important class of low-rank structured matrices known as {1; 1}-quasiseparable matrices with respect to relative perturbations of the parameters in the quasiseparable and in the Givens-vector representations of these matrices, and we provide fast algorithms for computing them. Comparisons among the new structured condition numbers and the unstructured one are also presented, as well as numerical experiments showing that the structured condition numbers can be small in situations where the unstructured one is huge. In addition, the approach presented in this paper is general and may be extended to other problems and classes of low-rank structured matrices.
Low-rank structured matrices have attracted much attention in the last decades, since they arise in many applications and all share the fundamental property that can be represented by O(n) parameters, where n × n is the size of the matrix. This property has allowed the development of fast algorithms for solving numerically many problems involving low-rank structured matrices by performing operations on the parameters describing the matrices, instead of directly on the matrix entries. Among these problems, the solution of linear systems of equations is probably the most basic and relevant one. Therefore, it is important to measure, via structured computable condition numbers, the relative sensitivity of the solutions of linear systems with low-rank structured coefficient matrices with respect to relative perturbations of the parameters representing such matrices, since this sensitivity determines the maximum accuracy attainable by fast algorithms and allows us to decide which set of parameters is the most convenient from the point of view of accuracy. To develop and analyze such condition numbers is the main goal of this paper. To this purpose, a general expression is obtained for the condition number of the solution of a linear system of equations whose coefficient matrix is any differentiable function of a vector of parameters with respect to perturbations of such parameters. Since there are many different classes of low-rank structured matrices and many different types of parameters Partially supported by Ministerio de Economía y Competitividad of Spain through grants describing them, it is not possible to cover all of them in a single work. Therefore, the general expression of the condition number is particularized to the important case of {1, 1}-quasiseparable matrices and to the quasiseparable and the Givens-vector representations, in order to obtain explicit expressions of the corresponding two condition numbers that can be estimated in O(n) operations. In addition, detailed theoretical and numerical comparisons of these two condition numbers between themselves, and with respect to unstructured condition numbers, are provided, which show that there are situations in which the unstructured condition number is much larger than the structured ones, but that the opposite never happens. The approach presented in this manuscript can be generalized to other classes of low-rank structured matrices and parameterizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.