In this paper, we propose and empirically test a cross-sectional profitability forecasting model which incorporates two major improvements relative to extant models. First, in terms of model construction, we incorporate mean reversion through the use of a twostage partial adjustment model and inclusion of a number of additional relevant determinants of profitability. Second, in terms of model estimation, we employ least absolute deviation (LAD) analysis instead of ordinary least squares because the former approach is able to better accommodate outliers. Results reveal that forecasts from our model are more accurate than three extant models at every forecast horizon considered and more accurate than consensus analyst forecasts at forecast horizons of two through five years. Further analysis reveals that LAD estimation provides the greatest incremental accuracy improvement followed by the inclusion of income subcomponents as predictor variables, and implementation of the two-stage partial adjustment model. In terms of economic relevance, we find that forecasts from our model are informative about future returns, incremental to forecasts from other models, analysts' forecasts, and standard risk factors. Overall, our results are important because they document the increased accuracy and economic relevance of a cross-sectional profitability forecasting model which incorporates improvements to extant models in terms of model construction and estimation.Les auteurs proposent et testent de fac ßon empirique un mod ele pr evisionnel de rentabilit e transversal comportant deux am eliorations importantes par rapport aux mod eles existants. En premier lieu, au chapitre de la structure du mod ele, les auteurs incorporent la r egression a la moyenne en utilisant un mod ele d'ajustement partiel a deux paliers et plusieurs d eterminants pertinents suppl ementaires de la rentabilit e. En second lieu, au chapitre de l'estimation du mod ele, les auteurs, plutôt que d'appliquer la m ethode classique des moindres carr es, ont recours a l'analyse du moindre ecart absolu parce qu'elle permet de mieux traiter les valeurs extrêmes. Ils constatent que les pr evisions produites par leur mod ele sont plus exactes que celles de trois mod eles existants, et cela pour tous les horizons pr evisionnels du plan de recherche, et qu'elles sont egalement plus exactes que les pr evisions consensuelles des analystes, pour les horizons pr evisionnels de deux a cinq ans. Une analyse plus pouss ee indique que l'estimation du moindre ecart absolu procure l'am elioration marginale la plus importante de l'exactitude, suivie de l'inclusion des sous-el ements du revenu a titre de variables ind ependantes et de l'emploi du mod ele d'ajustement partiel a deux paliers. Pour ce qui est de la pertinence economique, les auteurs observent que les pr evisions produites par leur mod ele sont plus r ev elatrices des rendements futurs que celles que fournissent les autres mod eles, que les pr evisions des analystes et que les facteurs de risque standard. Dans l'ensemble...
This study examines the economic implications of fair value liability gains and losses arising from the adoption of Statement of Financial Accounting Standards No. 159 (hereafter, FAS 159). We find a positive correspondence between a firm’s FAS 159 fair value liability gains and losses and current period stock returns, consistent with the notion that these gains and losses are priced by equity investors. However, further analysis indicates that fair value gains and losses from liabilities have a statistically significant negative association with future returns, suggesting that investors misprice this earnings component and subsequently correct the mispricing. We also find that the negative association for fair value gains is stronger for firms with lower levels of institutional ownership.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.