-Under the circumstance of pursuing high speed and miniaturization, mini-type air turbines have been widely applied to high-speed dental handpieces in recent years. Among all the components of a mini-type air turbine, bearing is the most important part which significantly affects its efficiency. Friction, collision, and wear are the main causes to make the ball bearing unable to reach higher efficiency. Though very small sliding friction can be realized by the aerostatic bearing, its poor bearing capacity limits the application. This research combines the magnetic and aerostatic levitation principle to develop a magnetoaerostatic hybrid bearing for miniature air turbine. The aerostatic bearing undertakes the main function of the radial and the axial bearings. However, the air bearing also possesses a drawback, which is pneumatic hammer effect induced by the air compressibility. In order to eliminate the pneumatic instability, an axial passive magnetic bearing is integrated into the aerostatic bearing. With the magnetic bearing, not only the bearing capacity can be improved, but also the pneumatic hammer effect can be significantly damped. Both theoretical calculation and finite element method (FEM) are used to study the cause and elimination solution of the pneumatic instability. Through experimental testing, the performance of our developed magneto-aerostatic bearing is also verified. The magneto-aerostatic bearing suppresses the axial vibration over 57%, and also enhances its axial bearing capacity by 50%.
Bearings for high-speed rotors are the key component of dental handpieces. The friction induced by conventional ball bearings restricts its speed and reduces its efficiency. In order to significantly improve the efficiency of dental handpieces, a mini-type cartridge that integrates a turbine and a spindle with radial aerostatic bearings and axial passive magnetic bearings has been ingeniously designed and realized. Around the rotating spindle, there is a high-pressured air film built up by a pair of radial aerostatic bearings, and magnet rings are applied to create repulsive forces to axially support the rotating spindle. The high-pressured air film comes from the specifically designed separable orifice restrictors, which can be easily and precisely manufactured. Frictionless bearing effect can be achieved by aerostatic principle, and the magnetic principle is applied to create large repulsive force against the axial working force. A tri-directional air inlet is designed to reduce radial loading force of a spindle during working. The modularized form of the magneto-aerostatic bearing allows it to be easily assembled and replaced in the very compact space of a mini-type cartridge. Through analytical simulations with fluid-dynamics software (CFD) and experiments, the magneto-aerostatic bearing is optimized to bring out efficient performance in its limited space. The experiments have verified that its noise level is 15dB lower than the conventional cartridge with ball bearings, and its startup air pressure is reduced from 0.4 bar to 0.1 bar. Under the same operation conditions, the newly developed cartridge with magneto-aerostatic bearings creates twice higher speed than that of the conventional one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.