MCR is common in older adults, and is a strong and early risk factor for cognitive decline. This clinical approach can be easily applied to identify high-risk seniors in a wide variety of settings.
In this study, 97 patients with senile dementia of the Alzheimer type (SDAT) in a nursing home were followed over a period of 2 years, and the relationship between falls and gait function was examined. The findings indicated that the number of fallers was significantly higher in moderate-stage SDAT patients than in the mild-stage patients. In the moderate-stage SDAT patients, walking speed and stride length, measured as indices to evaluate gait function, were significantly lower, and the stride length variability was significantly higher than in mild-stage patients. When comparing the gait indices of fallers and non-fallers by the severity of dementia, a significant difference was observed only in stride length variability. The gait abnormality associated with advanced severity in dementia is believed to be a factor affecting falling. In particular, stride length variability appeared to be an effective predictor of falling.
Temporoparietal glucose hypometabolism, neuronal loss in the basal forebrain cholinergic structures and preferential accumulation of neurofibrillary tangles in the rhinal cortex (i.e. in the entorhinal and perirhinal cortices) are three early characteristics of Alzheimer's disease. Based on studies of the effects of neurotoxic lesions in baboons, we previously concluded that damage to the cholinergic structures plays, at best, a marginal role in the association neocortex hypometabolism of Alzheimer's disease. In the present study, we have assessed the remote metabolic effects of bilateral neurotoxic lesions of both entorhinal and perirhinal cortices. Using coronal PET coregistered with MRI, the cerebral metabolic rate for glucose (CMR(glc)) was measured before surgery and sequentially for 2-3 months afterward (around days 30, 45 and 80). Compared with sham-operated baboons, the lesioned animals showed a significant and long-lasting CMR(glc) decline in a small set of brain regions, especially in the inferior parietal, posterior temporal, posterior cingulate and associative occipital cortices, as well as in the posterior hippocampal region, all of which also exhibit glucose hypometabolism in Alzheimer's disease. Remarkably, the degree of CMR(glc) decline in four of these regions significantly correlated with the severity of histologically determined damage in the rhinal cortex, strongly supporting the specificity of the observed metabolic effects. There were also differences between the metabolic pattern observed in the lesioned animals and that classically reported in Alzheimer's disease; for instance, the hypometabolism we found in the stratum has not been reported in early Alzheimer's disease, although this structure can be affected in late stages of the disease and has direct anatomical connections with the rhinal cortex. Nevertheless, this study shows for the first time that the temporoparietal and hippocampal hypometabolism found in Alzheimer's disease may partly result from neuroanatomical disconnection with the rhinal cortex. This, in turn, further strengthens the hypothesis that neuronal damage and dysfunction in the rhinal cortices play a major role in the expression of Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.