[1] Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.
Very limited information is available regarding the impact of heating and cooling processes on the geotechnical performance of piled foundations incorporating pipe loops for ground-source heat-pump systems (so-called energy piles). A pile-loading test that incorporated temperature cycles while under an extended period of maintained loading was undertaken to investigate the behaviour of an energy pile installed in London Clay. Testing was carried out over a period of about seven weeks, with conventional loading tests carried out either side of an extended loading test with thermal cycles. Using an optical fibre sensor system, and other more conventional instrumentation, temperature and strain profiles were observed in the test pile, an adjacent bore-hole, two of the anchor piles, and the heat sink pile. Details of load and movement at the pile head, of ambient air temperature and of the input/output temperature of fluid within the heating system were also recorded. Thermodynamic behaviour observed during the test supports the assumption that the pile acts as an infinitely long heat sink/source, and that the conductivity values used for the London Clay were reasonable. Forces mobilised in the pile shaft and the resistance mobilised at the pile/soil interface have been inferred from the test response, and the effects have been described using a simplified mechanism. Concrete stresses additional to those due to static loading are generated when the pile is heated, and the pile end-restraint conditions influence the effect; concrete stresses could potentially exceed the limiting values imposed by design codes. In this case there was a large margin between the pile ultimate shaft resistance and the shear stresses mobilised at the pile/soil interface during thermal cycling, and as a consequence, it is considered unlikely that the geotechnical capacity of the pile was affected significantly.
Despite the large number of studies concerned with microbially induced carbonate precipitation (MICP) on soils, little attention has been paid to the effect of the chemical concentration used in the treatment on the precipitation pattern of calcium carbonate and their influence on engineering properties of MICP cemented soils. In this study, unconfined compressive strength tests were conducted on sand samples treated using 0·1, 0·25, 0·5 and 1 M urea–calcium chloride solutions. It was found that, although the strength of tested samples all increased after MICP treatment, the magnitude of this increase depended on the concentration used in the treatment and that the use of a low-chemical-concentration (i.e. urea and calcium chloride) solution resulted in stronger samples. Permeability test results showed that the use of a high-urea–calcium chloride-concentration solution resulted in a rapid drop in permeability at the early stage of calcite precipitation, whereas the use of a low-chemical-concentration solution was found to result in a more gradual and uniform decrease in permeability. This observed effect of chemical concentration on the strength and permeability of MICP cemented soils can have implications for the design of MICP for field applications.
Energy piles are an effective and economic means of using geothermal energy resources for heating and cooling buildings, contributing to legislative requirements for renewable energy in new construction. While such piles have been used for around 25 years with no apparent detrimental effect, there is limited understanding of their thermo-mechanical behaviour. This paper synthesises the results from three published field studies and illustrates some of the engineering behaviour of such piles during heating and cooling. Simplified load transfer mechanisms for a single pile subjected to pure thermal loadings (i.e. without mechanical load) and combined thermo-mechanical loadings have been developed and are used to interpret the field data with regard to change in axial stress and shaft friction during heating and cooling. The effect of end restraint and ground conditions on the thermo-mechanical response of energy piles is discussed. Values of change in axial stress and mobilised shaft friction due to thermal effects that may be useful in the design of energy piles are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.