Humans are frequently exposed to various airborne allergens in the atmospheric environment. These allergens may trigger a complex network of immune responses in the airways, resulting in asthma and other chronic airway diseases. Here, we investigated the immunological mechanisms involved in the pathological changes induced by chronic exposure to multiple airborne allergens. Naïve mice were exposed intranasally to a combination of common airborne allergens, including the house dust mite, Alternaria, and Aspergillus, for up to 8 weeks. These allergens acted synergistically and induced robust eosinophilic airway inflammation, specific IgE antibody production, type 2 cytokine response and airway hyperreactivity (AHR) in 4 weeks, followed by airway remodeling in 8 weeks. Increased lung infiltration of T cells, B cells, and type 2 innate lymphoid cells (ILC2s) was observed. CD4+ T cells and ILC2s contributed to the sources of IL-5 and IL-13, suggesting involvement of both innate and adaptive immunity in this model. The lung levels of IL-33 increased quickly within several hours after allergen exposure and continued to rise throughout the chronic phase of inflammation. Mice deficient in IL-33 receptor (Il1rl1−/−) and TSLP receptor (Tslpr−/−) showed significant reduction in airway inflammation, IgE antibody levels and AHR. In contrast, mice deficient in IL-25 receptor or IL-1 receptor showed minimal differences as compared to wild-type animals. Thus, chronic exposure to natural airborne allergens triggers a network of innate and adaptive type 2 immune responses and airway pathology, and IL-33 and TSLP likely play key roles in this process.
Hypoxia-inducible factor-1α (HIF-1α), a transcription factor that functions as a master regulator of oxygen homeostasis, has been implicated in fibrinogenesis. Here, we explore the role of HIF-1α in transforming growth factor-β (TGF-β) signaling by examining the effects of TGF-β(1) on the expression of plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of lung tissue from a mouse bleomycin (BLM)-induced pulmonary fibrosis model revealed that expression of HIF-1α and PAI-1 was predominantly induced in alveolar macrophages. Real-time RT-PCR and ELISA analysis showed that PAI-1 mRNA and activated PAI-1 protein level were strongly induced 7 days after BLM instillation. Stimulation of cultured mouse alveolar macrophages (MH-S cells) with TGF-β(1) induced PAI-1 production, which was associated with HIF-1α protein accumulation. This accumulation of HIF-1α protein was inhibited by SB431542 (type I TGF-β receptor/ALK receptor inhibitor) but not by PD98059 (MEK1 inhibitor) and SB203580 (p38 MAP kinase inhibitor). Expression of prolyl-hydroxylase domain (PHD)-2, which is essential for HIF-1α degradation, was inhibited by TGF-β(1), and this decrease was abolished by SB431542. TGF-β(1) induction of PAI-1 mRNA and its protein expression were significantly attenuated by HIF-1α silencing. Transcriptome analysis by cDNA microarray of MH-S cells after HIF-1α silencing uncovered several pro-fibrotic genes whose regulation by TGF-β(1) required HIF-1α, including platelet-derived growth factor-A. Taken together, these findings expand our concept of the role of HIF-1α in pulmonary fibrosis in mediating the effects of TGF-β(1) on the expression of the pro-fibrotic genes in activated alveolar macrophages.
While type 2 immune responses to environmental antigens are thought to play pivotal roles in asthma and allergic airway diseases, the immunological mechanisms that initiate the responses are largely unknown. Many allergens have biologic activities, including enzymatic activities and abilities to engage innate pattern-recognition receptors such as TLR4. Here we report that IL-33 and thymic stromal lymphopoietin (TSLP) were produced quickly in the lungs of naïve mice exposed to cysteine proteases, such as bromelain and papain, as a model for allergens. IL-33 and TSLP sensitized naïve animals to an innocuous airway antigen OVA, which resulted in production of type 2 cytokines and IgE antibody and eosinophilic airway inflammation when mice were challenged with the same antigen. Importantly, upon exposure to proteases, uric acid (UA) was rapidly released into the airway lumen, and removal of this endogenous UA by uricase prevented type 2 immune responses. UA promoted secretion of IL-33 by airway epithelial cells in vitro, and administration of UA into the airways of naïve animals induced extracellular release of IL-33, followed by both innate and adaptive type 2 immune responses in vivo. Finally, a potent UA synthesis inhibitor, febuxostat, mitigated asthma phenotypes that were caused by repeated exposure to natural airborne allergens. These findings provide mechanistic insights into the development of type 2 immunity to airborne allergens and recognize airway UA as a key player that regulates the process in respiratory mucosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.