We assessed vaccine effectiveness (VE) against medically attended, laboratory-confirmed influenza in children 6 months to 15 years of age in 22 hospitals in Japan during the 2013–14 season. Our study was conducted according to a test-negative case-control design based on influenza rapid diagnostic test (IRDT) results. Outpatients who came to our clinics with a fever of 38°C or over and had undergone an IRDT were enrolled in this study. Patients with positive IRDT results were recorded as cases, and patients with negative results were recorded as controls. Between November 2013 and March 2014, a total of 4727 pediatric patients (6 months to 15 years of age) were enrolled: 876 were positive for influenza A, 66 for A(H1N1)pdm09 and in the other 810 the subtype was unknown; 1405 were positive for influenza B; and 2445 were negative for influenza. Overall VE was 46% (95% confidence interval [CI], 39–52). Adjusted VE against influenza A, influenza A(H1N1)pdm09, and influenza B was 63% (95% CI, 56–69), 77% (95% CI, 59–87), and 26% (95% CI, 14–36), respectively. Influenza vaccine was not effective against either influenza A or influenza B in infants 6 to 11 months of age. Two doses of influenza vaccine provided better protection against influenza A infection than a single dose did. VE against hospitalization influenza A infection was 76%. Influenza vaccine was effective against influenza A, especially against influenza A(H1N1)pdm09, but was much less effective against influenza B.
The 2014/15 influenza season in Japan was characterised by predominant influenza A(H3N2) activity; 99% of influenza A viruses detected were A(H3N2). Subclade 3C.2a viruses were the major epidemic A(H3N2) viruses, and were genetically distinct from A/New York/39/2012(H3N2) of 2014/15 vaccine strain in Japan, which was classified as clade 3C.1. We assessed vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children aged 6 months to 15 years by test-negative case–control design based on influenza rapid diagnostic test. Between November 2014 and March 2015, a total of 3,752 children were enrolled: 1,633 tested positive for influenza A and 42 for influenza B, and 2,077 tested negative. Adjusted VE was 38% (95% confidence intervals (CI): 28 to 46) against influenza virus infection overall, 37% (95% CI: 27 to 45) against influenza A, and 47% (95% CI: -2 to 73) against influenza B. However, IIV was not statistically significantly effective against influenza A in infants aged 6 to 11 months or adolescents aged 13 to 15 years. VE in preventing hospitalisation for influenza A infection was 55% (95% CI: 42 to 64). Trivalent IIV that included A/New York/39/2012(H3N2) was effective against drifted influenza A(H3N2) virus, although vaccine mismatch resulted in low VE.
Isolated cortical vein thrombosis (ICVT) is extremely rare. Only single case or small series of ICVT have been reported; clinical details are still uncertain. We report a case of isolated superficial sylvian vein thrombosis with exceedingly long cord sign. A 14-year-old female with severe sudden onset headache visited our hospital. Fluid attenuated inversion recovery and echo-planar T 2 * susceptibility-weighted imaging (T 2 *SW) showed a long cord sign on the surface of the sylvian fissure. The patency of dural sinuses and deep cerebral veins were confirmed by magnetic resonance venography (MRV), and diagnosis of ICVT was made. She recovered completely without anticoagulant agents. To clarify the clinical characteristics of ICVT, we reviewed 51 ICVT cases in the literature. In many cases, T 2 *SW was the most useful examination to diagnose ICVT. In contrast with general cerebral venous thrombosis, MRV and conventional angiography were either supporting or useless. Anastomotic cortical veins were involved frequently; symptoms of gyri around the veins were common. It also suggested that ICVTs of the silent area might have been overlooked because of nonspecific symptoms, and more patients with ICVT may exist. In cases involving patients with nonspecific symptoms, the possibility of ICVT should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.