The development of new flexible and stretchable sensors addresses the demands of upcoming application fields like internet-of-things, soft robotics, and health/structure monitoring. However, finding a reliable and robust power source to operate these devices, particularly in off-the-grid, maintenance-free applications, still poses a great challenge. The exploitation of ubiquitous temperature gradients, as the source of energy, can become a practical solution, since the recent discovery of the outstanding thermoelectric properties of a conductive polymer, poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS). Unfortunately the use of PEDOT:PSS is currently constrained by its brittleness and limited processability. Herein, PEDOT:PSS is blended with a commercial elastomeric polyurethane (Lycra), to obtain tough and processable self-standing films. A remarkable strainat-break of ≈700% is achieved for blends with 90 wt% Lycra, after ethylene glycol treatment, without affecting the Seebeck voltage. For the first time the viability of these novel blends as stretchable self-powered sensors is demonstrated.
The development of ionic conductors with extreme stretchability, superior ionic conductivity, and harsh‐environment resistance is urgent while challenging because the tailoring of these performances is mutually exclusive. Herein, a hydrophobicity‐constrained association strategy is presented for fabricating a liquid‐free ion‐conducting fluorinated elastomer (ICFE) with microphase‐separated structures. Hydrophilic nanodomains with long‐range ordering and selectively enriched Li ions provided high‐efficient conductive pathways, yielding impressive room‐temperature ionic conductivity of 3.5 × 10–3 S m–1. Hydrophobic nanodomains with abundant and reversible hydrogen bonds endow the ICFE with superior damage‐tolerant performances including ultrastretchability (>6000%), large toughness (17.1 MJ m–3) with notch insensitivity, antifatigue ability, and high‐efficiency self‐healability. Due to its liquid‐free characteristic and surface‐enriched hydrophobic nanodomains, the ICFE demonstrates an extreme temperature tolerance (−20 to 300 °C) and unique underwater resistance. The resultant ICFE is assembled into a proof‐of‐concept skin‐inspired sensor, showing impressive capacitive sensing performance with high sensitivity and wide‐strain‐range linearity (gauge factor to 1.0 in a strain range of 0–350%), excellent durability (>1000 cycles), and unique waterproofness in monitoring of complex human motions. It is believed that the hydrophobicity‐constrained association method boosts the fabrication of stretchable ionic conductors holding a great promise in skin‐inspired ionotronics with harsh‐environment tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.