Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.
The mitogen-activated protein kinase (MAPK) pathway is a conserved eukaryotic signaling module that converts receptor signals into various outputs. MAPK is activated through phosphorylation by MAPK kinase (MAPKK), which is first activated by MAPKK kinase (MAPKKK). A genetic selection based on a MAPK pathway in yeast was used to identify a mouse protein kinase (TAK1) distinct from other members of the MAPKKK family. TAK1 was shown to participate in regulation of transcription by transforming growth factor-beta (TGF-beta). Furthermore, kinase activity of TAK1 was stimulated in response to TGF-beta and bone morphogenetic protein. These results suggest that TAK1 functions as a mediator in the signaling pathway of TGF-beta superfamily members.
The TAK1 MAPKKK mediates activation of JNK and NF-KB in the IL-1-activated signaling pathway. Here we report the identification of TAB2, a novel intermediate in the IL-1 pathway that functionally links TAK1 to TRAF6. Expression of TAB2 induces JNK and NF-kappaB activation, whereas a dominant-negative mutant TAB2 impairs their activation by IL-1. IL-1 stimulates translocation of TAB2 from the membrane to the cytosol where it mediates the IL-1-dependent association of TAK1 with TRAF6. These results define TAB2 as an adaptor linking TAK1 and TRAF6 and as a mediator of TAK1 activation in the IL-1 signaling pathway.
Transforming growth factor-beta (TGF-beta) regulates many aspects of cellular function. A member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, TAK1, was previously identified as a mediator in the signaling pathway of TGF-beta superfamily members. The yeast two-hybrid system has now revealed two human proteins, termed TAB1 and TAB2 (for TAK1 binding protein), that interact with TAK1. TAB1 and TAK1 were co-immunoprecipitated from mammalian cells. Overproduction of TAB1 enhanced activity of the plasminogen activator inhibitor 1 gene promoter, which is regulated by TGF-beta, and increased the kinase activity of TAK1. TAB1 may function as an activator of the TAK1 MAPKKK in TGF-beta signal transduction.
A cDNA encoding a novel member of the mitogen-activated protein kinase kinase (MAPKK) family, MAPKK6, was isolated and found to encode a protein of 334 amino acids, with a calculated molecular mass of 37 kDa that is 79% identical to MKK3. MAPKK6 was shown to phosphorylate and specifically activate the p38/MPK2 subgroup of the mitogen-activated protein kinase superfamily and could be demonstrated to be phosphorylated and activated in vitro by TAK1, a recently identified MAPKK kinase. MKK3 was also shown to be a good substrate for TAK1 in vitro. Furthermore, when co-expressed with TAK1 in cells in culture, both MAPKK6 and MKK3 were strongly activated. In addition, co-expression of TAK1 and p38/MPK2 in cells resulted in activation of p38/MPK2. These results indicate the existence of a novel kinase cascade consisting of TAK1, MAPKK6/MKK3, and p38/MPK2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.