This animal study was performed to ascertain whether the regeneration of membrane-protected bone defects can be accelerated by the controlled application of basic fibroblast growth factor (FGF-2) using a new drug delivery system. Standardized alveolar bone defects were made surgically in 9 beagle dogs, and FGF-2 was administered using specially made collagen minipellets. A minipellet containing either 0.15 microgram FGF-2 (FGF) or 0 microgram FGF-2 (placebo) was placed in the defect or no minipellet was used (control), and bone regeneration was evaluated radiologically, histologically, and histometrically 8 weeks after the operation. Radiographs showed a surprisingly large radiopaque region in FGF sites compared with placebo or control sites. Histologically, mature bone filled the majority of the inner space of the membrane-protected defect in FGF sites. New bone formation was also seen in the control and the placebo sites, however, it filled less than half the area of the defect. Histometrically, the area of regenerated bone in FGF sites was significantly higher than in the other sites (P < 0.01). These results demonstrate that the controlled application of FGF-2 accelerates bone regeneration in membrane-protected bone defects in the canine model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.