Zinc, iron and copper are concentrated in senile plaques of Alzheimer disease. Copper and iron catalyze the Fenton-Haber-Weiss reaction, which likely contributes to oxidative stress in neuronal cells. In this study, we found that ascorbate oxidase activity and the intensity of ascorbate radicals measured using ESR spectroscopy, generated by free Cu(II), was decreased in the presence of amyloid-beta (Abeta), the major component of senile plaques. Specifically, the ascorbate oxidase activity was strongly inhibited (85% decrease) in the presence of Abeta1-16 or Abeta1-42, whereas it was only slightly inhibited in the presence of Abeta1-12 or Abeta25-35 (<20% inhibition). Ascorbate-dependent hydroxyl radical generation by free Cu(II) decreased in the presence of Abeta in the identical order of Abeta1-42, Abeta1-16 > Abeta1-12 and was abolished in the presence of 2-fold molar excess glycylhystidyllysine (GHK). Ascorbate oxidase activity and ascorbate-dependent hydroxyl radical generation by free Fe(III) were inhibited by Abeta1-42, Abeta1-16, and Abeta1-12. Although Cu(II)-Abeta shows a significant SOD-like activity, the rate constant for the reaction of superoxide with Cu(II)-Abeta was much slower than that with SOD. Overall, our results suggest that His6, His13, and His14 residues of Abeta1-42 control the redox activity of transition metals present in senile plaques.
Proteasome inhibitors, the well-known inhibitors of NF-κB, are recently considered therapeutic agents for inflammation. However, the anti-inflammatory properties of these agents have not been fully evaluated. In this report we describe a novel effect of proteasome inhibitors on the expression of monocyte chemoattractant protein 1 (MCP-1) in mesangial cells. We found that proteasome inhibitor MG132 dose-dependently induced expression of MCP-1 at the transcriptional level. The stimulatory effect was similarly observed with other proteasome inhibitors (proteasome inhibitor 1 and lactacystin) and in other cell types (NRK fibroblasts). The 5′-flanking region of the MCP-1 gene contains multiple AP-1 sites. To explore the mechanisms involved, we examined the effects of proteasome inhibition on the AP-1 pathway. Northern blot analysis showed that MG132 rapidly induced the expression of c-jun, but not c-fos. Immunoblot analysis showed that MG132 prevented degradation of c-Jun protein. Kinase assay revealed that c-Jun N-terminal kinase (JNK) was rapidly activated by MG132. Consistent with these results, a reporter assay showed that AP-1 activity was up-regulated after treatment with MG132. Curcumin, a pharmacological inhibitor of the JNK-AP-1 pathway, abrogated the induction of MCP-1 by MG132. Similarly, stable transfection with a dominant-negative mutant of c-Jun attenuated both MG132-induced activation of AP-1 and expression of MCP-1. The transcriptional activation by proteasome inhibitors was observed not only in MCP-1, but also in other AP-1-dependent genes, including stromelysin and mitogen-activated protein kinase phosphatase 1. These data revealed that proteasome inhibition triggered the expression of MCP-1 and other genes via the multistep induction of the JNK-c-Jun/AP-1 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.