The aim of this study was to assess physiological demands of competitive basketball by measuring oxygen consumption (VO2) and other variables during practice games. Each of 12 players (20.4 +/- 1.1 years) was monitored in a 20-min practice game, which was conducted in the same way as actual games with the presence of referees and coaches. VO2 was measured by a portable system during the game and blood lactate concentration (LA) was measured in brief breaks. Subjects were also videotaped for time-motion analysis. Female and male players demonstrated respective VO2 of 33.4 +/- 4.0 and 36.9 +/- 2.6 mL/kg/min and LA of 3.2 +/- 0.9 and 4.2 +/- 1.3 mmol/L in the practice games (P>0.05). They spent 34.1% of play time running and jumping, 56.8% walking, and 9.0% standing. Pre-obtained VO(2max) was correlated to VO(2) during play (r=0.673) and to percent of duration for running and jumping (r=0.935 and 0.962 for females and males, respectively). This study demonstrated a greater oxygen uptake for competitive basketball than that estimated based on a previous compendium. The correlation between aerobic capacity and activity level suggests the potential benefit of aerobic conditioning in basketball.
BackgroundThe prevalence of dementia varies around the world, potentially contributed to by international differences in rates of age-related cognitive decline. Our primary goal was to investigate how rates of age-related decline in cognitive test performance varied among international cohort studies of cognitive aging. We also determined the extent to which sex, educational attainment, and apolipoprotein E ε4 allele (APOE*4) carrier status were associated with decline.Methods and findingsWe harmonized longitudinal data for 14 cohorts from 12 countries (Australia, Brazil, France, Greece, Hong Kong, Italy, Japan, Singapore, Spain, South Korea, United Kingdom, United States), for a total of 42,170 individuals aged 54–105 y (42% male), including 3.3% with dementia at baseline. The studies began between 1989 and 2011, with all but three ongoing, and each had 2–16 assessment waves (median = 3) and a follow-up duration of 2–15 y. We analyzed standardized Mini-Mental State Examination (MMSE) and memory, processing speed, language, and executive functioning test scores using linear mixed models, adjusted for sex and education, and meta-analytic techniques. Performance on all cognitive measures declined with age, with the most rapid rate of change pooled across cohorts a moderate -0.26 standard deviations per decade (SD/decade) (95% confidence interval [CI] [-0.35, -0.16], p < 0.001) for processing speed. Rates of decline accelerated slightly with age, with executive functioning showing the largest additional rate of decline with every further decade of age (-0.07 SD/decade, 95% CI [-0.10, -0.03], p = 0.002). There was a considerable degree of heterogeneity in the associations across cohorts, including a slightly faster decline (p = 0.021) on the MMSE for Asians (-0.20 SD/decade, 95% CI [-0.28, -0.12], p < 0.001) than for whites (-0.09 SD/decade, 95% CI [-0.16, -0.02], p = 0.009). Males declined on the MMSE at a slightly slower rate than females (difference = 0.023 SD/decade, 95% CI [0.011, 0.035], p < 0.001), and every additional year of education was associated with a rate of decline slightly slower for the MMSE (0.004 SD/decade less, 95% CI [0.002, 0.006], p = 0.001), but slightly faster for language (-0.007 SD/decade more, 95% CI [-0.011, -0.003], p = 0.001). APOE*4 carriers declined slightly more rapidly than non-carriers on most cognitive measures, with processing speed showing the greatest difference (-0.08 SD/decade, 95% CI [-0.15, -0.01], p = 0.019). The same overall pattern of results was found when analyses were repeated with baseline dementia cases excluded. We used only one test to represent cognitive domains, and though a prototypical one, we nevertheless urge caution in generalizing the results to domains rather than viewing them as test-specific associations. This study lacked cohorts from Africa, India, and mainland China.ConclusionsCognitive performance declined with age, and more rapidly with increasing age, across samples from diverse ethnocultural groups and geographical regions. Associations varied a...
Background With no effective treatments for cognitive decline or dementia, improving the evidence base for modifiable risk factors is a research priority. This study investigated associations between risk factors and late-life cognitive decline on a global scale, including comparisons between ethno-regional groups. Methods and findings We harmonized longitudinal data from 20 population-based cohorts from 15 countries over 5 continents, including 48,522 individuals (58.4% women) aged 54-105 (mean = 72.7) years and without dementia at baseline. Studies had 2-15 years of follow-up. The risk factors investigated were age, sex, education, alcohol consumption, anxiety, apolipoprotein E ε4 allele (APOE*4) status, atrial fibrillation, blood pressure and pulse pressure, body mass index, cardiovascular disease, depression, diabetes, self-rated health, high cholesterol, hypertension, peripheral vascular disease, physical activity, smoking, and history of stroke. Associations with risk factors were determined for a global cognitive composite outcome (memory, language, processing speed, and executive functioning tests) and Mini-Mental State Examination score. Individual participant data meta-analyses of multivariable linear mixed model results pooled across cohorts revealed that for at least 1 cognitive outcome, age (B = −0.1, SE = 0.01), APOE*4 carriage (B = −0.31, SE = 0.11), depression (B = −0.11, SE = 0.06), diabetes (B = −0.23, SE = 0.10), current smoking (B = −0.20, SE = 0.08), and history of stroke (B = −0.22, SE = 0.09) were independently associated with poorer cognitive Determinants of cognition in diverse ethno-regional groups
BackgroundThe low physical activity domain of the frailty phenotype has been assessed with various self-reported questionnaires, which are prone to possible recall bias and a lack of diagnostic accuracy. The primary purpose of this study was to define the low physical activity domain of the frailty phenotype using accelerometer-based measurement and to evaluate the internal construct validity among older community-dwellers. Secondly, we examined potential correlates of frailty in this population.MethodsWe conducted a cross-sectional study of 1,527 community-dwelling older men and women aged 65 and over. Data were drawn from the baseline survey of the Sasaguri Genkimon Study, a cohort study carried out in a west Japanese suburban community. Frailty phenotypes were defined by the following five components: unintentional weight loss, low grip strength, exhaustion, slow gait speed, and low physical activity. Of these criteria, physical activity was objectively measured with a tri-axial accelerometer. To confirm our measure’s internal validity, we performed a latent class analysis (LCA) to assess whether the five components could aggregate statistically into a syndrome. We examined the correlates of frailty using multiple stepwise logistic regression models.ResultsThe estimated prevalence of frailty was 9.3% (95% confidence intervals, CI, 8.4-11.2); 43.9% were pre-frail (95% CI, 41.5-46.4). The percentage of low physical activity was 19.5%. Objectively-assessed physical activity and other components aggregated statistically into a syndrome. Overall, increased age, poorer self-perceived health, depressive and anxiety symptoms, not consuming alcohol, no engagement in social activities, and cognitive impairment were associated with increased odds of frailty status, independent of co-morbidities.ConclusionsThis study confirmed the internal construct validity of the frailty phenotype that defined the low energy expenditure domain with the objective measurement of physical activity. Accelerometry may potentially standardize the measurement of low physical activity and improve the diagnostic accuracy of the frailty phenotype criteria in primary care setting. The potential role of factors associated with frailty merits further studies to explore their clinical application.Electronic supplementary materialThe online version of this article (doi:10.1186/s12877-015-0037-9) contains supplementary material, which is available to authorized users.
Background: Although the Montreal Cognitive Assessment (MoCA) is acknowledged as a promising neuropsychological tool, its normative data for older populations have not been established yet. The purpose of this study was to provide normative data for the MoCA in Japanese community-dwelling older people. Methods: In a Japanese town, 1,977 participants aged 65 years or older (mean age 73.6 years; male 41.3%) completed MoCA tests. After descriptive and regression analyses, normative data were developed for MoCA scores in the population. Results: The mean MoCA score observed (21.8 points) was lower than that for normal controls (27.4 points) in the original validation study of the MoCA. Additionally, 82.6% of MoCA scores fell below the standard cutoff of 26 points for detecting mild cognitive impairment (MCI). The regression analysis showed that higher age and fewer years of formal education were associated with lower MoCA scores (p < 0.001). Normative data for MoCA scores were presented with respect to age and education. Conclusion: This study provided normative data for the MoCA in a Japanese community-dwelling older population. This research also suggests that conventional use of the MoCA as a screening tool for MCI might be problematic in cultures different from that in which the cutoff was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.