A cDNA encoding an octopamine (OA) receptor (BmOAR1) was isolated from the nerve tissue of silkworm (Bombyx mori) larvae. Comparison of amino acid sequences showed that BmOAR1 is highly identical to OA receptors isolated from Periplaneta americana (Pa oa(1)), Apis mellifera (AmOA1), and Drosophila melanogaster (OAMB or DmOA1A). BmOAR1 was stably expressed in HEK-293 cells. OA above 1 microM led to an increase in intracellular cyclic AMP concentration ([cAMP](i)). The synthetic OA-receptor agonist demethylchlordimeform also elevated [cAMP](i) to the same maximal level (approximately 5-fold over the basal level) as that induced by OA. However, other biogenic amines, tyramine and dopamine, and chlordimeform were without effects. The [cAMP](i) level raised by OA was lowered by antagonists; the rank order of antagonist activity was chlorpromazine > mianserin = yohimbine. Cyproheptadine and metoclopramide had little effect. OA above 100 nM induced a transient or sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), depending on the concentration of OA. Sequence homology and functional analysis data indicate that BmOAR1 is an alpha-adrenergic-like OA receptor of B. mori.
Linalool is a major component of essential oils and possesses various biological effects in sensory or central nervous systems. To investigate the pharmacological and biophysical effects of linalool on voltage-gated currents in sensory neurons, we used the whole-cell patch clamp and the Ca(2+) imaging techniques. Under the voltage clamp, membrane depolarization generated time- and voltage-dependent current responses in newt olfactory receptor cells (ORCs). Linalool significantly and reversibly suppressed the voltage-gated currents in ORCs. The dose-suppression relation of linalool for the voltage-gated Na(+) current could be fitted by the Hill equation with a half-blocking concentration of 0.56 mM and a Hill coefficient of 1.2. To test whether linalool suppresses voltage-gated currents in ORCs specifically or suppresses currents in other neurons generally, we next examined the effects of linalool on voltage-gated currents in newt retinal neurons and rat cerebellar Purkinje cells. Linalool suppressed the voltage-gated currents not only in retinal horizontal cells and ganglion cells but also in Purkinje cells. Furthermore, bath application of linalool inhibited the KCl-induced [Ca(2+)](i) response of ORCs, suggesting that linalool suppresses Ca(2+) currents in ORCs. These results suggest that linalool non-selectively suppresses the voltage-gated currents in newt sensory neurons and rat cerebellar Purkinje cells.
A cDNA encoding a gamma-aminobutyric acid (GABA) receptor subunit was cloned from the small brown planthopper Laodelphax striatella. The L. striatella GABA receptor subunit was found to have high amino acid sequence similarity to the bd-type splice variant of the Drosophila GABA receptor Rdl subunit and several other GABA receptor subunits, with identities of over 70%. The cDNA was inserted into the expression vector pAc5.1-lac-Hygro. Clonal cell lines stably expressing homo-oligomeric L. striatella GABA receptors were generated by transfecting the vector into D.mel-2 cells. Expression of functional GABA receptors in the cell lines was demonstrated by whole-cell patch clamp recordings. GABA induced inward currents with an EC(50) value of 29 microM and a Hill coefficient of 1.7. The GABA-evoked responses reversed close to the Nernst equilibrium potential for chloride ions. The amplitudes of agonist-induced currents were found to be in the order muscimol (100 microM) >/= GABA (100 microM) > isoguvacine (100 microM) > cis-4-aminocrotonic acid (CACA) (100 microM) > 5-(4-piperidyl)-3-isoxazolol (4-PIOL) (1 mM). Antagonists such as fipronil (100 nM), 4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) (100 nM), dieldrin (100 nM) and SR95531 (gabazine) (1 microM) suppressed GABA-induced currents. The functional expression of a GABA receptor from an agricultural pest presents a unique opportunity to discover new molecules active at this important target site.
Narusuye, Kenji, and Tatsumi Nagahama. Cerebral CBM1 neuron contributes to synaptic modulation appearing during rejection of seaweed in Aplysia kurodai. J Neurophysiol 88: 2778J Neurophysiol 88: -2795J Neurophysiol 88: , 2002 10.1152/jn.00757.2001. The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for Ͼ100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calciumsensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ϳ30 spikes/s while the Ulva extract induced an activity of ϳ20 spikes/s, consistent with the effective firing frequency (Ͼ25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.
Key points• The molecular basis of left-right asymmetries in brain structure and function is a central question in neuroscience.• We have previously demonstrated that the neuronal circuitry composed of hippocampal pyramidal neurones is asymmetrical depending on the hemispheric origin of presynaptic inputs and cell polarity of the postsynaptic neurone.• In this study, we analysed the hippocampus of β2-microglobulin (β2m)-deficient mice lacking stable cell surface expression of major histocompatibility complex class I (MHCI), which is known to be important in cellular immunity.• We found that β2m-deficient mice lacked structural and functional asymmetries in hippocampal circuitry, suggesting that MHCI is critical for the generation of hippocampal asymmetry.• Our results provide a first step in elucidating the cellular process that generates brain asymmetries.Abstract Left-right asymmetry is a fundamental feature of higher-order brain function; however, the molecular basis of brain asymmetry has remained unclear. We have recently demonstrated asymmetries in hippocampal circuitry resulting from the asymmetrical allocation of NMDA receptor (NMDAR) subunit GluRε2 (NR2B) in pyramidal cell synapses. This asymmetrical allocation of ε2 subunits affects the properties of NMDARs and generates two populations of synapses, 'ε2-dominant' and 'ε2-non-dominant' synapses, according to the hemispheric origin of presynaptic inputs and cell polarity of the postsynaptic neurone. To identify key regulators for generating asymmetries, we analysed the hippocampus of β2-microglobulin (β2m)-deficient mice lacking cell surface expression of major histocompatibility complex class I (MHCI). Although MHCI proteins are well known in the immune system, accumulating evidence indicates that MHCI proteins are expressed in the brain and are required for activity-dependent refinement of neuronal connections and normal synaptic plasticity. We found that β2m proteins were localised in hippocampal synapses in wild-type mice. NMDA EPSCs in β2m-deficient hippocampal synapses receiving inputs from both hemispheres showed similar sensitivity to Ro 25-6981, an ε2 subunit-selective antagonist, with those in 'ε2-dominant' synapses for both the apical and basal synapses of pyramidal neurones. The structural features of the β2m-deficient synapse in addition to the relationship between the stimulation frequency and synaptic plasticity were also comparable to those of 'ε2-dominant' synapses. These observations indicate that the β2m-deficient hippocampus lacks 'ε2-non-dominant' synapses and circuit asymmetries. Our findings provide evidence supporting a critical role of MHCI molecules for generating asymmetries in hippocampal circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.