The effects of anions (P(V), P(III), P(I), Se(IV), OH(-), F(-), Cl(-), SCN(-), S(IV), and CH(3)COO(-)) on the adsorption of trivalent metal ions (Fe(3+), Al(3+), Ga(3+), In(3+), and Sc(3+)) to three strongly acidic cation-exchange resins (-S)(-) of different types (porous or gel) and different exchange capacities (4.55, 3.91, and 0.96 mmol g(-1)) were studied systematically. All these metal ions showed coadsorption of OH(-), irrespective of the resins. In contrast, coadsorption of P(V), P(III), P(I), and Se(IV) was observed on the resins of the higher exchange capacities but not on the resin of the lowest exchange capacity. Stoichiometric analyses and spectroscopic (Mossbauer and infrared) studies for Fe(3+) demonstrated the presence of the coadsorbed species: [(-S)(2)Fe(OH)] and [(-S)(2)(Fe-O-Fe)(S-)(2)] for OH(-), [(-S)(2)Fe(HPO(4))Fe(S-)(2)] for P(V), and [(-S)(2)FeX](j) (X(-) = H(2)PO(3)(-), H(2)PO(2)(-), HSeO(3)(-); j > 1) for P(III), P(I), and Se(IV). No coadsorption was observed for the other anions. These findings indicate that the bridge bonding of anions between the metal ions adsorbed on the resins of the higher exchange capacities plays a crucial role for the coadsorption. Some analytical implication was also discussed.