SummaryTo understand more clearly the link between osteoarthritis and hyperlipidaemia, we investigated the inflammatory macrophage subsets and macrophage-regulated matrix metalloprotease-3 (MMP-3) and A disintegrin and metalloprotease with thrombospondin motifs-4 (ADAMTS4) in synovial (ST) and adipose tissues (AT) of osteoarthritic mice with hyperlipidaemia (STR/Ort). CD11c
BackgroundCalcitonin gene-related peptide (CGRP) is a 37-amino-acid vasodilatory neuropeptide that binds to receptor activity-modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CLR). Clinical and preclinical evidence suggests that CGRP is associated with hip and knee joint pain; however, the regulation mechanisms of CGRP/CGRP receptor signaling in synovial tissue are not fully understood.MethodsSynovial tissues were harvested from 43 participants with radiographic knee osteoarthritis (OA; unilateral Kellgren/Lawrence (K/L) grades 3–4) during total knee arthroplasty. Correlationships between the mRNA expression levels of CGRP and those of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cycloxygenase-2 (COX-2) were evaluated using real-time PCR analysis of total RNA extracted from the collected synovial tissues. To investigate the factors controlling the regulation of CGRP and CGRP receptor expression, cultured synovial cells were stimulated with TNF-α, IL-1β, IL-6, and prostaglandin E2 (PGE2) and were also treated with PGE2 receptor (EP) agonist.ResultsCGRP and COX-2 localized in the synovial lining layer. Expression of COX-2 positively correlated with CGRP mRNA expression in the synovial tissue of OA patients. The gene expression of CGRP and RAMP1 increased significantly in synovial cells exogenously treated with PGE2 compared to untreated control cells. In cultured synovial cells, CGRP gene expression increased significantly following EP4 agonist treatment, whereas RAMP1 gene expression increased significantly in the presence of exogenously added EP1 and EP2 agonists.ConclusionsPGE2 appears to regulate CGRP/CGRP receptor signaling through the EP receptor in the synovium of knee OA patients.
BackgroundRecent studies suggest that the vasodilatory neuropeptide calcitonin gene-related peptide (CGRP) is localized in the synovial tissue and may be involved in the pathology of hip and knee osteoarthritis (OA). However, the regulation and relationship between pain and CGRP expression levels in the synovial tissue of human OA patients are not fully understood.MethodsSynovial tissues were harvested from 74 participants with radiographic knee OA (unilateral Kellgren/Lawrence grades 3–4) during total knee arthroplasty. CGRP-expressing cells in the resected tissue were identified by immunohistochemical analyses. To examine CGRP expression levels, CD14-positive (CD14+) (macrophage-rich cell fraction) and CD14-negative (CD14−; fibroblast-rich cell fraction) cells were isolated from the synovial tissue. To investigate the involvement of prostaglandin E2 (PGE2) in the regulation of CGRP expression, cultured CD14− and CD14+ cells were stimulated with PGE2. In addition, CGRP expression levels in the synovial tissue of OA patients with strong/severe (visual analog scale [VAS]≥6) and mild/moderate pain (VAS<6) were compared.ResultsCGRP-positive cells were detected in the intimal lining layer and comprised both CD14− and CD14+ cells. CGRP expression in non-cultured CD14− fractions was significantly higher than that in CD14+ fractions. The expression levels of CGRP were significantly increased in cultured CD14− cell fractions treated with exogenous PGE2, compared to untreated CD14− cell fractions. In contrast, treatment with PGE2 did not increase CGRP regardless of whether or not CD14+ cells expressed CGRP. Furthermore, CGRP expression in the VAS≥6 group was also significantly higher than that in the VAS<6 group.ConclusionThese findings suggest that CGRP expression in the synovial fibroblasts is regulated by the COX-2/PGE2 pathway and that elevation of synovial CGRP levels may contribute to OA pain.
The effects of cryopreservation on tendon allograft have been reported, but remain unclear, particularly the potential effects on mechanical properties and histological changes by ice crystal formation. There are also few studies about effects of heating for sterilization of tendon. We evaluated the effect of cryopreservation or heating on the mechanical properties and histomorphology of rat bone-patellar tendon-bones (BTBs). BTBs were processed by cryopreservation at -80 degrees C for 3 weeks, or heating at 80 degrees C for 10 min. Tensile testing and histomorphological examination were performed. The cryopreservation of tendons showed less influences on their mechanical properties. When cryopreserved BTBs in frozen state were fixed by freeze-substitution method, many spaces were observed in interfibrillar substances. These results suggest that the collagen fibers of cryopreserved tendons were histomorphologically affected by ice crystals. The heating of tendons completely destroyed the collagen fibers of the tendons and is therefore thought to be inappropriate for the sterilization of BTBs.
Background Although several types of culture medium have been used for preservation of osteochondral allografts, the viability of chondrocytes decreases with increasing storage duration. We previously showed the University of Wisconsin solution is more suitable for graft preservation than culture medium. Questions/purposes We determined whether the addition of allogenic serum to University of Wisconsin solution increases chondrocyte survival during prolonged storage of osteochondral allografts. Methods Osteochondral tissue samples harvested from the distal femora of rats were preserved in University of Wisconsin solution supplemented with 0%, 1%, 10%, and 50% allogenic serum at 4°C for 14 days. Cell viability and chondrocyte degenerative changes of the samples then were assessed using a tetrazolium assay and histologic methods. We also evaluated time-dependent changes in cell viability and histologic findings of samples preserved for 7, 14, and 21 days in University of Wisconsin solution supplemented with or without 10% allogenic serum. Results After 14 days of preservation, osteochondral tissue samples maintained in University of Wisconsin solution containing 10% or greater allogenic serum exhibited the highest cell viability and lowest degenerative changes in chondrocytes. In the evaluation of time-dependent changes, we found the chondrocyte degenerative changes were greater in cartilage preserved in University of Wisconsin solution alone than in University of Wisconsin solution containing 10% allogenic serum after Day 7 or later. Conclusions Our results suggest the addition of 10% allogenic serum to University of Wisconsin solution enhances viability of osteochondral tissue samples. Clinical Relevance The use of allogenic serum-supplemented University of Wisconsin solution is expected to prolong the duration of osteochondral allograft storage and result in higher-quality grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.